Effect of Gellan Gum and Xanthan Gum Synergistic Interactions and Plasticizers on Physical Properties of Plant-Based Enteric Polymer Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Solution Preparation
2.2.2. Film and Hard Capsule Preparation
2.2.3. Sample Preparation
2.3. Characterization
2.3.1. Mechanical Properties
2.3.2. WVP
2.3.3. Optical Properties
2.3.4. Rheological Measurements
2.3.5. FTIR
2.3.6. TGA
2.3.7. DSC
2.3.8. XRD
2.3.9. SEM
3. Results and Discussion
3.1. Properties of Films with Different GG/XG Ratios
3.2. Rheological Analysis of Solution
3.3. Type of Plasticizer
3.4. Molecular Weight of PEG
3.5. FTIR Analysis of Films
3.6. Thermal Analysis of Films
3.7. XRD of Films
3.8. SEM of Films
3.9. Photograph of Plant-Based Enteric Hard Capsules
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, A.M.; Ingham, A.; Grover, L.M.; Perrie, Y. Polymer film formulations for the preparation of enteric pharmaceutical capsules. J. Pharm. Pharm. 2010, 62, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Son, J.R.; Baek, H.H.; Park, E.H.; Lee, S.W.; Song, M.G.; Cha, J.H.; Cha, J.U.; Ko, W.H. Method of Preparaing Enteric Hard Capsule and Enteric Hard Capsule Prepared Thereby. U.S. Patent 0,072,579 A1, 21 March 2013. [Google Scholar]
- Subburayalu, R.; Kunchithapatham, J.; Pillppan, R. Effect of ph of enteric polyer on dissolution profile of duloxetine hcl delayed release pellets at various ph ranges. Int. J. Pharm. Sci. Res. 2013, 4, 3400–3407. [Google Scholar]
- Maruyama, N. Composition for Enteric Hard Capsule and Method for Producing Enteric Hard Capsule. U.S. Patent 0,015,045 A1, 18 January 2018. [Google Scholar]
- Son, J.R.; Baek, H.H.; Lee, S.W.; Song, M.G.; Cha, J.U.; Park, E.H. Aqueous Composition for Enteric Hard Capsule, Method of Preparing Enteric Hard Capsule, and Enteric Hard Capsule Prepared Using the Method. U.S. Patent 0,161,364 A1, 28 June 2012. [Google Scholar]
- Son, J.R.; Baek, H.H.; Park, E.H.; Lee, S.W.; Song, M.G.; Cha, J.H.; Cha, J.U.; Ko, W.H. Composition for Enteric Hard Capsules, and Enteric Hard Capsule Prepared Using the Composition. U.S. Patent 0,203,868 A1, 8 August 2013. [Google Scholar]
- Benameur, H.; Cade, D.N.; Schreiber, S. Bulk Enteric Capsule Shells. U.S. Patent 0,287,840 A1, 31 October 2013. [Google Scholar]
- Son, J.R.; Park, E.H.; Baek, H.H. Composition for Enteric Hard Capsule and Enteric hard Capsule Perpared Using the Composition. U.S. Patent 0,080,479 A1, 19 March 2015. [Google Scholar]
- Ghasemlou, M.; Khodaiyan, F.; Oromiehie, A. Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydr. Polym. 2011, 84, 477–483. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Kim, S.S.; Lee, J. Novel synergistic transparent k-carrageenan/xanthan gum/gellan gum hydrogel film: Mechanical, thermal and water barrier properties. Int. J. Biol. Macromol. 2018, 118, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Bak, J.H.; Yoo, B. Intrinsic viscosity of binary gum mixtures with xanthan gum and guar gum: Effect of nacl, sucrose, and ph. Int. J. Biol. Macromol. 2018, 111, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.; Bak, J.H.; Yoo, B. Rheological characterizations of concentrated binary gum mixtures with xanthan gum and galactomannans. Int. J. Biol. Macromol. 2018, 114, 263–269. [Google Scholar] [CrossRef]
- Kumar, A.; Rao, K.M.; Han, S.S. Development of sodium alginate-xanthan gum based nanocomposite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polym. Test 2017, 63, 214–225. [Google Scholar] [CrossRef]
- Téllez Rangel, E.C.; Rodríguez Huezo, E.; Totosaus, A. Effect of gellan, xanthan or locust bean gum and/or emulsified maize oil on proteins edible films properties. Emir. J. Food Agric. 2018, 30, 404–412. [Google Scholar]
- Kurt, A.; Toker, O.S.; Tornuk, F. Effect of xanthan and locust bean gum synergistic interaction on characteristics of biodegradable edible film. Int. J. Biol. Macromol. 2017, 102, 1035–1044. [Google Scholar] [CrossRef]
- Yang, L.; Paulson, A.T. Mechanical and water vapour barrier properties of edible gellan films. Food Res. Int. 2000, 33, 563–570. [Google Scholar] [CrossRef]
- Ashikin, W.H.N.S.; Wong, T.W.; Law, C.L. Plasticity of hot air-dried mannuronate- and guluronate-rich alginate films. Carbohydr. Polym. 2010, 81, 104–113. [Google Scholar] [CrossRef]
- Paolicelli, P.; Petralito, S.; Varani, G.; Nardoni, M.; Pacelli, S.; Di Muzio, L.; Tirillò, J.; Bartuli, C.; Cesa, S.; Casadei, M.A.; et al. Effect of glycerol on the physical and mechanical properties of thin gellan gum films for oral drug delivery. Int. J. Pharm. 2018, 547, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, T.J.; Tapia, M.S.; Pérez, E.; Famá, L. Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocoll. 2015, 45, 211–217. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Y.; Shi, Q. Characterization of a novel edible film based on gum ghatti: Effect of plasticizer type and concentration. Carbohydr. Polym. 2016, 153, 345–355. [Google Scholar] [CrossRef]
- Gao, C.; Pollet, E.; Avérous, L. Innovative plasticized alginate obtained by thermo-mechanical mixing: Effect of different biobased polyols systems. Carbohydr. Polym. 2017, 157, 669–676. [Google Scholar] [CrossRef]
- Pongjanyakul, T.; Puttipipatkhachorn, S. Alginate-magnesium aluminum silicate films: Effect of plasticizers on film properties, drug permeation and drug release from coated tablets. Int. J. Pharm. 2007, 333, 34–44. [Google Scholar] [CrossRef]
- Santana, A.A.; Kieckbusch, T.G. Physical evaluation of biodegradable films of calcium alginate plasticized with polyols. Braz. J. Chem. Eng. 2013, 30, 835–845. [Google Scholar] [CrossRef]
- Olivas, G.I.; Barbosa-Cánovas, G.V. Alginate–calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. Lwt. Food Sci. Technol. 2008, 41, 359–366. [Google Scholar] [CrossRef]
- García, M.A.; Martino, M.N.; Zaritzky, N.E. Microstructural characterization of plasticized starch-based films. Starch Stärke 2000, 52, 118–124. [Google Scholar]
- Zhang, L.; Wang, Y.; Liu, H.; Yu, L.; Liu, X.; Chen, L.; Zhang, N. Developing hydroxypropyl methylcellulose/hydroxypropyl starch blends for use as capsule materials. Carbohydr. Polym. 2013, 98, 73–79. [Google Scholar] [CrossRef]
- ASTM. Standard test methods for tensile properties of thin plastic sheeting d 882. In Annual Booke of Astm; American Society for Testing and Materials: Philadelphia, PA, USA, 2001. [Google Scholar]
- ASTM. Standard test methods for water vapor transmission of materials e 96-95. In Annual Book of Astm; American Society for Testing and Materials: Philadelphia, PA, USA, 1995. [Google Scholar]
- Gennadios, A.; Weller, C.L.; Gooding, C.H. Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. J. Food Eng. 1994, 21, 395–409. [Google Scholar] [CrossRef]
- Gontard, N.; Duchez, C.; Cuq, J.L.; Guilbert, S. Edible composite films of wheat gluten and lipids: Water vapour permeability and other physical properties. Int. J. Food Sci. Technol. 1994, 29, 39–50. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, J.; Ye, J.; Zhao, P.; Xiao, M. Oxyalkylation modification as a promising method for preparing low-melting-point agarose. Int. J. Biol. Macromol. 2018, 117, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Goff, H.D.; Freslon, B.; Sahagian, M.E.; Hauber, T.D.; Stone, A.P.; Stanley, D.W. Structural development in ice cream-dynamic rheological measurements. J. Texture Stud. 1995, 26, 517–536. [Google Scholar] [CrossRef]
- Huang, T.; Tu, Z.C.; Shangguan, X.; Wang, H.; Sha, X.; Bansal, N. Rheological behavior, emulsifying properties and structural characterization of phosphorylated fish gelatin. Food Chem. 2018, 246, 428–436. [Google Scholar] [CrossRef]
- Alghooneh, A.; Razavi, S.M.A.; Behrouzian, F. Rheological characterization of hydrocolloids interaction: A case study on sage seed gum-xanthan blends. Food Hydrocoll. 2017, 66, 206–215. [Google Scholar] [CrossRef]
- He, H.; Ye, J.; Zhang, X.; Huang, Y.; Li, X.; Xiao, M. Kappa-carrageenan/locust bean gum as hard capsule gelling agents. Carbohydr. Polym. 2017, 175, 417–424. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Oromiehi, A.R. Thermal and mechanical behavior of laminated protein films. J. Food Eng. 2009, 90, 517–524. [Google Scholar] [CrossRef]
- Jouki, M.; Khazaei, N.; Ghasemlou, M.; Hadinezhad, M. Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydr. Polym. 2013, 96, 39–46. [Google Scholar] [CrossRef]
- Chakhoum, M.A.; Boukhachem, A.; Ghamnia, M.; Benameur, N.; Mahdhi, N.; Raouadi, K.; Amlouk, M. An attempt to study (111) oriented nio-like tco thin films in terms of structural, optical properties and photocatalytic activities under strontium doping. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 205, 649–660. [Google Scholar] [CrossRef]
- Jouki, M.; Yazdi, F.T.; Mortazavi, S.A.; Koocheki, A. Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. Int. J. Biol. Macromol. 2013, 62, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Gheribi, R.; Puchot, L.; Verge, P.; Jaoued-Grayaa, N.; Mezni, M.; Habibi, Y.; Khwaldia, K. Development of plasticized edible films from opuntia ficus-indica mucilage: A comparative study of various polyol plasticizers. Carbohydr. Polym. 2018, 190, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Wanchoo, R.K.; Sharma, P.K. Viscometric study on the compatibility of some water-soluble polymer–polymer mixtures. Eur. Polym. J 2003, 39, 1481–1490. [Google Scholar] [CrossRef]
- Mostafavi, F.S.; Kadkhodaee, R.; Emadzadeh, B.; Koocheki, A. Preparation and characterization of tragacanth-locust bean gum edible blend films. Carbohydr. Polym. 2016, 139, 20–27. [Google Scholar] [CrossRef]
- Cheng, M.; Deng, J.; Yang, F.; Gong, Y.; Zhao, N.; Zhang, X. Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials 2003, 24, 2871–2880. [Google Scholar] [CrossRef]
- Otalora, M.C.; Carriazo, J.G.; Iturriaga, L.; Nazareno, M.A.; Osorio, C. Microencapsulation of betalains obtained from cactus fruit (opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chem. 2015, 187, 174–181. [Google Scholar] [CrossRef]
- Damas, M.S.P.; Junior, V.A.P.; Nishihora, R.K.; Quadri, M.G.N. Edible films from mucilage of cereus hildmannianus fruits: Development and characterization. J. Appl. Polym. Sci. 2017, 134, 45223. [Google Scholar] [CrossRef]
- Martins, J.T.; Cerqueira, M.A.; Bourbon, A.I.; Pinheiro, A.C.; Souza, B.W.S.; Vicente, A.A. Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocoll. 2012, 29, 280–289. [Google Scholar] [CrossRef] [Green Version]
- Gennadios, A.; Weller, C.L.; Testin, R.F. Modification of physical and barrier properties of edible wheat gluten-based films. Cereal Chem. 1993, 70, 426–429. [Google Scholar]
- Chinese, P.C.O. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2015. [Google Scholar]
GG:XG | Gelling Temperature (°C) | Melting Temperature (°C) | Gelation Rate (×10−4 Pa/s) | tanδ0 |
---|---|---|---|---|
10:0 | 37.4 | 55.1 | 12.7 | 0.2319 |
9:1 | 38.4 | 60.7 | 13.4 | 0.2638 |
8:2 | 39.1 | 62 | 14.7 | 0.2627 |
7.5:2.5 | 71 | 60 | 16.2 | 0.2458 |
7:3 | 82 | 72 | 24.1 | 0.2114 |
6.5:3.5 | 67.3 | 66 | 24.5 | 0.2427 |
6:4 | 58.9 | 58 | 25.0 | 0.2387 |
5:5 | nd | nd | nd | nd |
Sample | E (KJ/g) | Tg (°C) |
---|---|---|
Powder Mixture | −90.700 | nd |
GG Film | −116.680 | 150.1 |
GG/XG Film | −151.610 | 213.0 |
PEG Film | −123.660 | 159.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Li, X.; Ye, J.; Yang, Y.; Huang, Y.; Zhang, X.; Xiao, M. Effect of Gellan Gum and Xanthan Gum Synergistic Interactions and Plasticizers on Physical Properties of Plant-Based Enteric Polymer Films. Polymers 2020, 12, 121. https://doi.org/10.3390/polym12010121
Zhang N, Li X, Ye J, Yang Y, Huang Y, Zhang X, Xiao M. Effect of Gellan Gum and Xanthan Gum Synergistic Interactions and Plasticizers on Physical Properties of Plant-Based Enteric Polymer Films. Polymers. 2020; 12(1):121. https://doi.org/10.3390/polym12010121
Chicago/Turabian StyleZhang, Na, Xiaohui Li, Jing Ye, Yucheng Yang, Yayan Huang, Xueqin Zhang, and Meitian Xiao. 2020. "Effect of Gellan Gum and Xanthan Gum Synergistic Interactions and Plasticizers on Physical Properties of Plant-Based Enteric Polymer Films" Polymers 12, no. 1: 121. https://doi.org/10.3390/polym12010121
APA StyleZhang, N., Li, X., Ye, J., Yang, Y., Huang, Y., Zhang, X., & Xiao, M. (2020). Effect of Gellan Gum and Xanthan Gum Synergistic Interactions and Plasticizers on Physical Properties of Plant-Based Enteric Polymer Films. Polymers, 12(1), 121. https://doi.org/10.3390/polym12010121