Effects of a Macromolecule Spirocyclic Inflatable Flame Retardant on the Thermal and Flame Retardant Properties of Epoxy Resin
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of SAPC
2.3. Preparation of the Composites EP/SAPC
2.4. Characterization
3. Results
3.1. Characterization of the Structure and Thermal Stability of SAPC
3.2. Analysis on Thermal Properties of EP/SAPC Composites
3.3. Analysis on Fire Safety of EP/SAPC Composites
3.4. Analysis on the Flame-Retardant Mechanism of Condensed Phase for EP/SAPC Composites
3.5. Analysis of Gas Phase Flame Retardant Mechanism of EP/SAPC Composites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tripathy, R.; Ojha, U.; Faust, R. Polyisobutylene modified bisphenol a diglycidyl ether based epoxy resins possessing improved mechanical properties. Macromolecules 2011, 44, 6800–6809. [Google Scholar] [CrossRef]
- Jiang, S.D.; Tang, G.; Chen, J.; Huang, Z.Q.; Hu, Y. Biobased polyelectrolyte multilayer-coated hollow mesoporous silica as a green flame retardant for epoxy resin. J. Hazard. Mater. 2018, 342, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Cheng, Y.; Liu, Y.; Wang, Q. Intergrowth charring for flame-retardant glass fabric-reinforced epoxy resin composites. J. Mater. Chem. A 2015, 3, 4284–4290. [Google Scholar] [CrossRef]
- Xu, Z.S.; Jia, H.Y.; Yan, L.; Chu, Z.Y.; Zhou, H. Synergistic effect of bismuth oxide and mono-component intumescent flame retardant on the flammability and smoke suppression properties of epoxy resins. Polym. Adv. Technol. 2019, 31, 25–35. [Google Scholar] [CrossRef]
- Feng, G.Y.; Cao, H.J.; Zhang, K.; Qian, K. Flame retardation of epoxy resin with expansible graphite. J. Mater. Sci. Technol. 2016, 34, 772–775. [Google Scholar]
- Zhang, W.C. The Research on the Mechanism and Application of Blowing-out Flame Retarded Epoxy Resins; Beijing Institute of Technology: Beijing, China, 2013. [Google Scholar]
- Wang, S.J.; Xin, F.; Qian, L.J.; Chen, Y.J. Phosphorus-nitrogen containing polymer wrapped carbon nanotubes and their flame-retardant effect on epoxy resin. Polym. Degrad. Stab. 2016, 129, 133–141. [Google Scholar] [CrossRef]
- Yu, B.; Xing, W.; Guo, W.; Qiu, S.L.; Wang, X.; Lo, S.M.; Hu, Y. Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol–gel process. J. Mater. Chem. A 2016, 4, 7330–7340. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, L.; Liu, J.; Wang, J.; Xu, Z.J. Functionalizing carbon nanotubes by grafting cyclotriphosphazene derivative to improve both mechanical strength and flame retardancy. Polym. Compos. 2014, 35, 2187–2193. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Qin, J.Y.; Zhang, W.C.; Pan, Y.T.; Wang, D.Y.; Yang, R.J. Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites. Chem. Eng. J. 2020, 381, 122777. [Google Scholar] [CrossRef]
- Xu, J.Y.; Hu, Y.; Wang, Q.A.; Fan, W.C.; Song, L. Green chemistry and technology in flame retardant materials industry. Polym. Eng. Sci. 2002, 18, 17–21. [Google Scholar]
- Shu, W.G.; Wu, Z.P. Research progress and application of intumescent flame retardant. Plast. Addit. 2002, 2, 2–4. [Google Scholar]
- Wang, N.; Teng, H.; Yang, F.; You, J.; Zhang, J.; Wang, D. Synthesis of K-Carrageenan flame-retardant microspheres and its application for waterborne epoxy resin with functionalized graphene. Polymers 2019, 11, 1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Wang, G. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating. Appl. Surf. Sci. 2016, 385, 453–463. [Google Scholar] [CrossRef]
- Antonopouloua, M.; Giannakasa, A.; Bairamisb, F.; Papadakia, M.; Konstantinou, I. Degradation of organophosphorus flame retardant tris (1-chloro-2-propyl) phosphate (TCPP) by visible light N,S-codoped TiO2 photocatalysts. Chem. Eng. J. 2016, 318, 231–239. [Google Scholar] [CrossRef]
- Yan, H.Q.; Li, N.N.; Fang, Z.P.; Wang, H. Application of poly(diphenolic acid-phenyl phosphate)-based layer by layer nanocoating in flame retardant ramie fabrics. J. Appl. Polym. Sci. 2017, 134, 1–13. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, B.C.; Shi, H.B. Combination effect of organics-modified montmorillonite with intumescent flame retardants on thermal stability and fire behavior of polyethylene nanocomposites. J. Appl. Polym. Sci. 2011, 121, 1285–1291. [Google Scholar] [CrossRef]
- Alongi, J.; Han, Z.D.; Bourbigot, S. Intumescence: Tradition versus novelty. A Compr. Rev. Prog. Polym. Sci. 2015, 51, 28–73. [Google Scholar] [CrossRef]
- Liu, W.; Chen, L.; Wang, Y. A novel phosphorus-containing flame retardant for the formaldehyde-free treatment of cotton fabrics. Polym. Degrad. Stab. 2012, 97, 2487–2491. [Google Scholar] [CrossRef]
- Wang, L.C.; Jiang, J.Q.; Jiang, P.K.; Yu, J.H. Synthesis, characteristic of a novel flame retardant containing phosphorus, silicon and its application in ethylene vinyl-acetate copolymer (EVM) rubber. J. Polym. Res. 2010, 17, 891–902. [Google Scholar] [CrossRef]
- Su, Y. Study on Synthesis and Flame Retardant Properties of Polymerized Phosphoamide Flame Retardant; Beijing Institute of Technology: Beijing, China, 2017. [Google Scholar]
- Horrocks, A.R.; Zhang, S. Enhancing polymer char formation by reaction with phosphorylated polyols. 1. Cellulose. Polymer 2001, 42, 8025–8033. [Google Scholar] [CrossRef]
- Ba, M.W.; Wang, C.S.; Liang, B. Synthesis of a novel phosphorus-nitrogen-boron flame retardant. Chin. J. Syn. Chem. 2017, 25, 515–519. [Google Scholar]
- Wang, X.; Hu, Y.; Song, L.; Xing, W.Y.; Lu, H.D.; Lv, P.; Jie, G.X. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 2010, 51, 2435–2445. [Google Scholar] [CrossRef]
- Du, B.; Ma, H.; Fang, Z. How nano-fillers affect thermal stability and flame retardancy of intumescent flame retarded polypropylene. Polym. Adv. Technol. 2011, 22, 1139–1146. [Google Scholar] [CrossRef]
- Jiang, D.W.; Sun, C.Y.; Zhou, Y.N.; Wang, H.; Yan, X.R.; He, Q.L.; Guo, J.; Gou, Z.H. Enhanced flame retardancy of cotton fabrics with a novel intumescent flame-retardant finishing system. Fibers Polym. 2015, 16, 388–396. [Google Scholar] [CrossRef]
- Ren, Y.L.; Gu, Y.T.; Zeng, Q.; Zhang, Y. UV-induced surface grafting polymerization for preparing phosphorus-containing flame retardant polyacrylonitrile fabric. Eur. Polym. J. 2017, 94, 1–10. [Google Scholar] [CrossRef]
- Wu, D.H.; Zhao, P.H.; Liu, Y.Q. Flame retardant property of novel intumescent flame retardant rigid polyurethane foams. Polym. Eng. Sci. 2013, 53, 2478–2485. [Google Scholar] [CrossRef]
- Hu, X.P.; Yang, J.; Li, X.Y.; Li, S.X.; Li, H.B.; Zhou, Y.L. Properties of a intumescent flame retardant containing SPDPC prepared by melting polymerization. China Plast. 2009, 23, 71–75. [Google Scholar]
- Zhao, D.; Wang, J.; Wang, X.L.; Wang, Y.Z. Highly thermostable and durably flame-retardant unsaturated polyester modified by a novel polymeric flame retardant containing Schiff base and spirocyclic structures. Chem. Eng. J. 2018, 344, 419–430. [Google Scholar] [CrossRef]
- Wang, Z.G.; Liang, B. Synthesis and properties of phosphorus and nitrogen containing intumescent flame-retardant curing agent for epoxy resin. Plast. Rubber Compos. 2018, 47, 306–314. [Google Scholar] [CrossRef]
- Sun, W.L.; He, Q.L.; Luo, Y. Synthesis and properties of cinnamic acid series organic UV ray absorbents-interleaved layered double hydroxides. Mater. Lett. 2007, 61, 1881–1884. [Google Scholar] [CrossRef]
- Gao, Y.S.; Wu, J.W.; Zhang, Z.; Jin, R.; Zhang, X.; Yan, X.R.; Umar, A.; Guo, Z.H.; Wang, Q. Synthesis of polypropylene/Mg3Al-X (X=C, N, Cl−, S) LDH nanocomposites using a solvent mixing method: Thermal and melt rheological properties. J. Mater Chem. A 2013, 1, 9928–9934. [Google Scholar] [CrossRef]
- Cai, J.; Heng, H.M.; Hu, X.P.; Xu, Q.K.; Miao, F. A facile method for the preparation of novel fire-retardant layered double hydroxide and its application as nanofiller in UP. Polym. Degrad. Stab. 2016, 126, 47–57. [Google Scholar] [CrossRef]
- Chen, P.P. Synthesis and Structure—Activity Research of Spirocyclic Phosphate Flame Retardants; Northeast Forestry University: Harbin, China, 2015. [Google Scholar]
- Duan, Y.Y.; Hu, Y.H.; Wang, X.Y. Preparation and property of a novel flame retardant containing P/N/Si for ABS resin. New. Chem. Mater. 2017, 45, 119–121. [Google Scholar]
- Zhan, J.; Song, L.; Nie, S.B.; Hu, Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym. Degrad. Stab. 2009, 94, 291–296. [Google Scholar] [CrossRef]
- Liu, W.; Chen, D.Q.; Wang, Y.Z.; Wang, D.Y.; Qu, M.H. Char-forming mechanism of a novel polymeric flame retardant with char agent. Polym. Degrad. Stab. 2007, 92, 1046–1052. [Google Scholar] [CrossRef]
- Ma, H.Y.; Fang, Z.P. Synthesis and carbonization chemistry of a phosphorous–nitrogen based intumescent flame retardant. Thermochim. Acta 2012, 534, 130–136. [Google Scholar] [CrossRef]
- Zhou, Y.; Feng, J.; Peng, H.; Qu, H.Q.; Hao, J.W. Catalytic pyrolysis and flame retardancy of epoxy resins with solid acid boron phosphate. Polym. Degrad. Stab. 2014, 110, 395–404. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Li, X.L.; Yuan, Y.S.; Pan, Y.T.; Wang, D.Y.; Yang, R.J. Confined dispersion of zinc hydroxystannate nanoparticles into layered bimetallic hydroxides nanocapsules and its application in flame retardant epoxy nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 40951–40960. [Google Scholar] [CrossRef]
- Song, S.Q.; Ma, J.J.; Cao, K.; Chang, G.J.; Huang, Y.W.; Yang, J.X. Synthesis of a novel dicyclic silicon-/phosphorus hybrid and its performance on flame retardancy of epoxy resin. Polym. Degrad. Stab. 2014, 99, 43–52. [Google Scholar] [CrossRef]
- Liang, B.; Wang, G.; Hong, X.D.; Long, J.P.; Tsubaki, N. Synthesis and properties of a new halogen-free flame retardant epoxy resin curing agent. High Perform. Polym. 2016, 28, 110–118. [Google Scholar] [CrossRef]
- Xu, H.J.; Jin, F.L.; Park, S.J. Synthesis of a Novel Phosphorus-containing Flame Retardant for Epoxy Resins. Bull. Korean Chem. Soc. 2009, 30, 2643. [Google Scholar]
- Xu, B.; Wu, X.; Ma, W.; Xin, F.; Qiu, Y. Synthesis and characterization of a novel organic-inorganic hybrid char-forming agent and its flame-retardant application in polypropylene composites. J. Anal. Appl. Pyrol. 2018, 134, 231–242. [Google Scholar] [CrossRef]
- Phan, H.T.; Nguyen, B.T.; Pham, L.H.; Pham, C.T.; Do, T.V.V.; Hoang, C.N.; Nguyen, N.N.; Kim, J.; Hoang, D. Excellent fireproof characteristics and high thermal stability of rice husk-filled polyurethane with halogen-free flame retardant. Polymers 2019, 11, 1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Li, Z.; Pan, Y.T.; Hu, S.; Zhang, X.Q.; Wang, R.; Wang, D.Y. Polydopamine induced natural fiber surface functionalization: A way toward flame retardancy of flax/poly(lactic acid) biocomposites. Compos. Part B Eng. 2018, 154, 56–63. [Google Scholar] [CrossRef]
- Xi, W.; Qian, L.; Li, L. Flame retardant behavior of ternary synergistic systems in rigid polyurethane foams. Polymers 2019, 11, 207. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.M.; Chen, J.W.; Jie, C.; Yang, J.H.; Huang, T.; Zhang, N.; Wang, R. Effect of organic montmorillonite on cold crystallization and hydrolytic degradation of poly(-lactide). Polym. Degrad. Stab. 2012, 97, 2273–2283. [Google Scholar] [CrossRef]
- Zhang, W.C.; Li, X.M.; Yang, R.J. Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS). Polym. Degrad. Stab. 2011, 96, 1821–1832. [Google Scholar] [CrossRef]
- Lu, P.P.; Wu, H.F.; Wang, S.Q.; Tong, J.Z.; Huang, G.B. Research progress of synthesis and application of single-component intumescent flame retardants. Mod. Plast. Process. Appl. 2014, 26, 60–63. [Google Scholar]
- Spontón, M.; Ronda, J.C.; Galià, M.; Cádiz, V. Cone calorimetry studies of benzoxazine–epoxy systems flame retarded by chemically bonded phosphorus or silicon. Polym. Degrad. Stab. 2009, 94, 102–106. [Google Scholar] [CrossRef]
Wavenumber (cm−1) | Structure |
---|---|
3735,3650 | –OH in H2O and phenols |
3038,829 | C–H in aromatic compounds |
3540,3340 | N–H in amine compounds |
2970 | –CH3, –CH2–in hydrocarbons |
1744 | C=O in aldehyde/ketone |
1605,1510,1338 | aromatic compounds |
1257,1178 | C–O in esters/ethers |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Wang, Y.; Ruan, F.; Liu, J.; Li, N.; Li, X. Effects of a Macromolecule Spirocyclic Inflatable Flame Retardant on the Thermal and Flame Retardant Properties of Epoxy Resin. Polymers 2020, 12, 132. https://doi.org/10.3390/polym12010132
Song K, Wang Y, Ruan F, Liu J, Li N, Li X. Effects of a Macromolecule Spirocyclic Inflatable Flame Retardant on the Thermal and Flame Retardant Properties of Epoxy Resin. Polymers. 2020; 12(1):132. https://doi.org/10.3390/polym12010132
Chicago/Turabian StyleSong, Kunpeng, Yinjie Wang, Fang Ruan, Jiping Liu, Nianhua Li, and Xueli Li. 2020. "Effects of a Macromolecule Spirocyclic Inflatable Flame Retardant on the Thermal and Flame Retardant Properties of Epoxy Resin" Polymers 12, no. 1: 132. https://doi.org/10.3390/polym12010132
APA StyleSong, K., Wang, Y., Ruan, F., Liu, J., Li, N., & Li, X. (2020). Effects of a Macromolecule Spirocyclic Inflatable Flame Retardant on the Thermal and Flame Retardant Properties of Epoxy Resin. Polymers, 12(1), 132. https://doi.org/10.3390/polym12010132