All-Waste Hybrid Composites with Waste Silicon Photovoltaic Module
Abstract
:1. Introduction
2. Characterization of the All-Polymer Waste Composites
2.1. Mechanical Testing
2.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.3. X-ray Analysis
3. Experimental Set-Up
3.1. Materials
3.2. Results and Discussions
3.2.1. Mechanical Properties
Before Water Immersion
After Water Immersion
- -
- the tensile strength values are very close to each another in all four composite series (with 20, 40, 100 and 200 μm Si-PV powder). These values, in turn, are comparable with that of the control sample (with no Si-PV powder content) Table 1,
- -
- with reference to the compressive strength, the composite with different Si-PV grain sizes exhibited higher compressive strength compared to the no Si-PV content composites, due to the higher inorganic filler stiffness, [21],
- -
- the samples with the best compressive strength are of 100 and 200 μm Si-PV, 49.91 and 45.14 MPa, respectively, as it can be seen in Table 3. These values are 69% and 55% higher than that of the control sample (29.36 MPa), Table 1. This could be explained by the reduced macromolecules polymeric chains mobility in the near vicinity of the inorganic particulates of such size,
- -
- 100 μm Si-PV sample has recorded Young moduli of 26.40 MPa, which is over 100% larger than the Young moduli of the control sample (10.91 MPa). This result again is explained by the reduced mobility of the polymeric chains. Furthermore, because the smaller Si-PV particulates size (100 microns) compared to that composites containing 200 microns Si-PV has expanded the surface contact of the polymeric chains with the inorganic particles and consequently the mobility of a larger polymer chains density has decreased.
3.2.2. XRD Analysis
3.2.3. FTIR Analysis
- -
- at about 2680 cm−1 present new band attributed to the vinyl group from EVA, thus confirming the highest amount of EVA in un-sieved Si-PV composites compared to the other ones. EVA has a high affinity to inorganic filler almost with silica [29],
- -
- 3400 cm−1 band intensity increases of un-sieved Si-PV composites assigned to –OH stretching vibration on the silica surface. This confirms the large silica amount in un-sieved Si-PV composite and the possibility to extend the organic-inorganic interface zone almost with EVA and rubber component,
- -
- increased intensity of the bands at about 730 and 1025 cm−1 corresponding to Si–O, thus proving a higher silica amount compared to the sieved Si-PV composites,
- -
- the 3750 cm−1 band broadening due to the increased amount of EVA, which interacts with the rubber component, thus extending interfaces in un-sieved Si-PV composites [30],
- -
- shoulder of 870 cm−1 bands appeared for un-sieved Si-PV composites as well as for the 200 microns Si-PV composites that could suggest a possible interaction of inorganic components of Si-PV module with PVC polymeric components,
3.2.4. SEM Morphology Investigation
3.3. High-Content Si-PV All Waste Hybrid Composites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Tao, J.; Yu, S. Review on feasible recycling pathways and technologies of solar photovoltaic modules. Sol. Energy Mater. Sol. Cells 2015, 141, 108–124. [Google Scholar] [CrossRef]
- Wang, R.; Song, E.; Zhang, C.; Zhuang, X.; Ma, E.; Bai, J.; Yuan, W.; Wang, J. Pyrolysis-based separation mechanism for waste crystalline silicon photovoltaic modules by a two-stage heating treatment. RSC Adv. 2019, 9, 18115–18123. [Google Scholar] [CrossRef] [Green Version]
- Paiano, A. Photovoltaic waste assessment in Italy. Renew. Sustain. Energy Rev. 2015, 41, 99–112. [Google Scholar] [CrossRef]
- Bakhiyi, B.; Labrèche, F.; Zayed, J. The photovoltaic industry on the path to a sustainable future—Environmental and occupational health issues. Environ. Int. 2014, 73, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Ibanescu, D.; Cailean, D.; Teodosiu, C.; Fiore, S. Assessment of the waste electrical and electronic equipment management systems profile and sustainability in developed and developing European Union countries. Wsste Manag. 2018, 73, 39–53. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Tan, Q.; Peters, A.L.; Yang, C. Global status of recycling waste solar panels: A review. Waste Manag. 2018, 75, 450–458. [Google Scholar] [CrossRef]
- Huang, W.-H.; Shin, W.J.; Wang, L.; Sun, W.-C.; Tao, M. Strategy and technology to recycle wafer-silicon solar modules. Sol. Energy 2017, 144, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, Y.-S.; Schäffer, A.; Hugi, C.; Fent, K.; Corvini, P.F.-X.; Lenz, M. Organic photovoltaics: Potential fate and effects in the environment. Environ. Int. 2012, 49, 128–140. [Google Scholar] [CrossRef]
- Nieland, S.; Neuhaus, U.; Pfaff, T.; Rädlein, E. New approaches for component recycling of crystalline solar modules. In Proceedings of the Electronics Goes Green, Berlin, Germany, 9–12 September 2012; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
- Doi, T.; Tsuda, I.; Unagida, H.; Murata, A.; Sakuta, K.; Kurokawa, K. Experimental study on PV module recycling with organic solvent method. Sol. Energy Mater. Sol. Cells 2001, 67, 397–403. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J. Dissolution of ethylene vinyl acetate in crystalline silicon PV modules using ultrasonic irradiation and organic solvent. Sol. Energy Mater. Sol. Cells 2012, 98, 317–322. [Google Scholar] [CrossRef]
- Cosnita, M.; Cazan, C.; Duta, A.; Visa, I. Recycling Silicon-PV Modules in Composites with PVC, HDPE and Rubber Wastes. In Conference on Sustainable Energy; Springer: Berlin/Heidelberg, Germany, 2017; pp. 375–394. [Google Scholar]
- Peijs, T. Composites for recyclability. Mater. Today 2003, 4, 30–35. [Google Scholar] [CrossRef]
- Adhikari, B. Reclamation and recycling of waste rubber. Prog. Polym. Sci. 2000, 25, 909–948. [Google Scholar] [CrossRef]
- Ning, N.; Li, S.; Wu, H.; Tian, H.; Yao, P.; Hu, G.-H.; Tian, M.; Zhang, L. Preparation, microstructure, and microstructure-properties relationship of thermoplastic vulcanizates (TPVs): A review. Prog. Polym. Sci. 2018, 79, 61–97. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, Z.; Guo, B.; Zhang, L. Significantly improved rubber-silica interface via subtly controlling surface chemistry of silica. Compos. Sci. Technol. 2018, 156, 70–77. [Google Scholar] [CrossRef]
- Tian, C.; Chu, G.; Feng, Y.; Lu, Y.; Miao, C.; Ning, N.; Zhang, L.; Tian, M. Quantitatively identify and understand the interphase of SiO2/rubber nanocomposites by using nanomechanical mapping technique of AFM. Compos. Sci. Technol. 2019, 170, 1–6. [Google Scholar] [CrossRef]
- Abbas, Z.M.; Tawfilas, M.; Khani, M.M.; Golian, K.; Marsh, Z.M.; Jhalaria, M.; Simonutti, R.; Stefik, M.; Kumar, S.K.; Benicewicz, B.C. Reinforcement of polychloroprene by grafted silica nanoparticles. Polymer 2019, 171, 96–105. [Google Scholar] [CrossRef]
- Cosnita, M.; Cazan, C.; Duta, A. The influence of inorganic additive on the water stability and mechanical properties of recycled rubber, polyethylene terephthalate, high density polyethylene and wood composites. J. Clean. Prod. 2017, 165, 630–636. [Google Scholar] [CrossRef]
- Xu, H.; Song, Y.; Jia, E.; Zheng, Q. Dynamics heterogeneity in silica-filled nitrile butadiene rubber. J. Appl. Polym. Sci. 2018, 135, 46223. [Google Scholar] [CrossRef]
- Ahmed, I.; Jhung, S.H. Composites of metal–organic frameworks: Preparation and application in adsorption. Mater. Today 2014, 17, 136–146. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, T.; Kim, K.; Kim, B.; Kwag, G.; Kim, J.Y.; Ji, S.; Kim, W.; Paik, H.J. Poly(styrene-r-butadiene)-b-poly(poly(ethylene glycol) methyl ether methacrylate) as a silica dispersant in rubber compounds. Polym. Int. 2014, 63, 908–914. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, L.; Yuan, D.; Chen, Y. Design of super-tough co-continuous PLA/NR/SiO2 TPVs with balanced stiffness-toughness based on reinforced rubber and interfacial compatibilization. Compos. Sci. Technol. 2018, 165, 231–239. [Google Scholar] [CrossRef]
- Melo, A.R.A.; Da Silva, E.O.; Menezes, L.R.; Tavares, M.I.B. The effect of modified cellulose particles on morphology and properties ethylene vinyl acetate copolymer. Polym. Test. 2018, 68, 333–339. [Google Scholar] [CrossRef]
- Giovino, M.; Pribyl, J.; Benicewicz, B.; Bucinell, R.; Schadler, L. Mechanical properties of polymer grafted nanoparticle composites. Nanocomposites 2018, 4, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Terzopoulou, Z.; Klonos, P.A.; Kyritsis, A.; Tziolas, A.; Avgeropoulos, A.; Papageorgiou, G.Z.; Bikiaris, D.N. Interfacial interactions, crystallization and molecular mobility in nanocomposites of Poly(lactic acid) filled with new hybrid inclusions based on graphene oxide and silica nanoparticles. Polymer 2019, 166, 1–12. [Google Scholar] [CrossRef]
- Kapgate, B.P.; Das, C.; Das, A.; Basu, D.; Wiessner, S.; Reuter, U.; Heinrich, G. Reinforced chloroprene rubber by in situ generated silica particles: Evidence of bound rubber on the silica surface. J. Appl. Polym. Sci. 2016, 133, 1–10. [Google Scholar]
- Ma, P.; Jiang, L.; Hoch, M.; Dong, W.; Chen, M. Reinforcement of transparent ethylene-co-vinyl acetate rubber by nanocrystalline cellulose. Eur. Polym. J. 2015, 66, 47–56. [Google Scholar] [CrossRef]
- Sasikala, A.; Kala, A. Thermal stability and mechanical strength analysis of EVA and blend of EVA with natural rubber. Mater. Today Proc. 2018, 5, 8862–8867. [Google Scholar] [CrossRef]
- Tunnicliffe, L.B.; Busfield, J.J.C. Reinforcement of Rubber and Filler Network Dynamics at Small Strains. Polym. Phys. 2016, 275, 71–102. [Google Scholar]
PVC: Rubber: HDPE: PV | RT (MPa) | Sd (for RT) | E (MPa) | RC (MPa) | Sd (for RT) | RI (kJ/m2) | Sd (for RT) |
---|---|---|---|---|---|---|---|
60:35:5:0 un-immersed samples | 2.4 ± 0.18 | 0.1848 | 10.91 | 29.36 ± 1.16 | 1.1574 | 10.72 ± 0.78 | 0.7800 |
500 h water immersed | 2.62 ± 0.19 | 0.1873 | 20.08 | 50.46 ± 0.90 | 0.8950 | 11.2 ± 0.74 | 0.7371 |
1000 h water immersed | 2.4 ± 0.25 | 0.2499 | 28.45 | 53.1 ± 2.02 | 2.0154 | 11.85 ± 0.43 | 0.4327 |
Water Immersion Duration | Si-PV (wt %) | RT (MPa) | Sd (for RT) | E (MPa) | RC (MPa) | Sd (for RC) |
---|---|---|---|---|---|---|
un-immersed | 0.50 | 1.98 ± 0.19 | 0.1850 | 8.18 | 18.15 ± 0.91 | 0.9050 |
1.00 | 2.13 ± 0.09 | 0.0917 | 10.72 | 22.85 ± 0.94 | 0.9425 | |
1.50 | 2.13 ± 0.21 | 0.2113 | 11.64 | 27.28 ± 2.04 | 2.0367 | |
2.00 | 2.4 ± 0.40 | 0.3993 | 15.62 | 27.46 ± 2.45 | 2.4492 | |
2.50 | 2.32 ± 0.45 | 0.4486 | 15.42 | 28.29 ± 0.87 | 0.8712 | |
3.00 | 2.39 ± 0.46 | 0.4572 | 16.86 | 28.54 ± 1.01 | 1.0076 | |
500 h | 0.50 | 2.35 ± 0.40 | 0.3998 | 29.64 | 51.65 ± 0.56 | 0.5565 |
1.00 | 2.38 ± 0.34 | 0.3383 | 16.44 | 31.14 ± 1.43 | 1.4312 | |
1.50 | 1.82 ± 0.17 | 0.1701 | 13.25 | 30.95 ± 2.00 | 1.9952 | |
2.00 | 2.65 ± 0.26 | 0.2594 | 17.74 | 36.57 ± 1.08 | 1.0831 | |
2.50 | 2.05 ± 0.17 | 0.1710 | 24.91 | 37.24 ± 0.27 | 0.2651 | |
3.00 | 2.62 ± 0.41 | 0.4105 | 20.08 | 50.46 ± 1.03 | 1.0318 | |
1000 h | 0.50 | 2.76 ± 0.45 | 0.4521 | 19.54 | 51.95 ± 1.02 | 1.0200 |
1.00 | 2.5 ± 0.45 | 0.4454 | 23.83 | 51.9 ± 1.95 | 1.9456 | |
1.50 | 2.28 ± 0.35 | 0.3493 | 10.50 | 42.48 ± 0.68 | 0.6843 | |
2.00 | 2.12 ± 0.27 | 0.2730 | 20.50 | 43.14 ± 1.41 | 1.4065 | |
2.50 | 2.1 ± 0.30 | 0.2955 | 21.42 | 37.79 ± 0.91 | 0.9106 | |
3.00 | 2.4 ± 0.25 | 0.2468 | 28.45 | 53.1 ± 1.33 | 1.3268 |
PVC: Rubber: HDPE: PV 60:32:5:3 | PV Grain Size (μm) | RT (MPa) | Sd (for RT) | E (MPa) | RC (MPa) | Sd (for RC) | RI (kJ/m2) | Sd (for RI) |
---|---|---|---|---|---|---|---|---|
un-immersed | 20 | 2.51 ± 0.20 | 0.1955 | 21.75 | 36.75 ± 0.84 | 0.8351 | 10.24 ± 0.97 | 0.9729 |
40 | 2.33 ± 0.35 | 0.3477 | 18.61 | 41.62 ± 1.19 | 1.1856 | 11.43 ± 0.31 | 0.3050 | |
100 | 2.45 ± 0.23 | 0.2301 | 26.40 | 49.91 ± 0.97 | 0.9711 | 11.84 ± 0.87 | 0.8651 | |
200 | 2.44 ± 0.22 | 0.2194 | 17.55 | 45.14 ± 0.06 | 0.0557 | 13.54 ± 0.88 | 0.8827 | |
all | 2.36 ± 0.18 | 0.1758 | 17.16 | 49.54 ± 0.88 | 0.8780 | 12.89 ± 0.76 | 0.7601 | |
500 h water immersed Samples | 20 | 2.4 ± 0.48 | 0.4800 | 20.41 | 43.82 ± 1.21 | 1.2123 | 23.59 ± 0.33 | 0.3332 |
40 | 2.13 ± 0.42 | 0.4223 | 18.58 | 36.34 ± 1.05 | 1.0512 | 23.25 ± 0.46 | 0.4565 | |
100 | 2.42 ± 0.24 | 0.2390 | 25.72 | 26.39 ± 1.36 | 1.3563 | 23.25 ± 0.56 | 0.5631 | |
200 | 2.66 ± 0.29 | 0.2851 | 27.33 | 39.4 ± 0.25 | 0.2498 | 23.59 ± 0.36 | 0.3568 | |
all | 2.62 ± 0.46 | 0.4613 | 20.08 | 50.46 ± 0.85 | 0.8455 | 27.14 ± 0.18 | 0.1779 | |
1000 h water immersed Samples | 20 | 2.45 ± 0.45 | 0.4493 | 21.67 | 43.94 ± 1.73 | 1.7266 | 26.62 ± 0.53 | 0.5250 |
40 | 2.26 ± 0.32 | 0.3205 | 15.34 | 37.27 ± 0.90 | 0.8990 | 23.25 ± 0.57 | 0.5661 | |
100 | 2.26 ± 0.41 | 0.4062 | 26.51 | 42.94 ± 0.24 | 0.2386 | 23.25 ± 0.38 | 0.3751 | |
200 | 2.58 ± 0.55 | 0.5468 | 25.44 | 50.86 ± 0.61 | 0.6067 | 23.92 ± 0.78 | 0.7842 | |
all | 2.4 ± 0.37 | 0.3736 | 28.45 | 53.1 ± 0.10 | 0.0950 | 28.86 ± 0.87 | 0.8652 |
PV Grain Size | No Si-PV | Un Sieved | 20 (μm) | 40 (μm) | 100 (μm) | 200 (μm) |
---|---|---|---|---|---|---|
Crystallinity (%) | 63.3 | 46.5 | 43.6 | 47.8 | 51.5 | 64.2 |
PV Grain Size (μm) | Crystallinity (%) |
---|---|
20_un-immersed | 38.9 |
20_500 h water immersed | 38.8 |
20_1000 h water immersed | 48.3 |
200_ un-immersed | 40.0 |
200_500 h water immersed | 43.5 |
200_1000 h water immersed | 59.6 |
Si-PV (wt %) | RT (MPa) | Sd (for RT) | E (MPa) | RC (MPa) | Sd (for RC) | RI (kJ/m2) | Sd (for RI) |
---|---|---|---|---|---|---|---|
10 | 1.92 ± 0.21 | 0.2117 | 12.25 | 48.63 ± 0.48 | 0.4770 | 23.25 ± 0.34 | 0.3395 |
20 | 1.25 ± 0.08 | 0.0781 | 5.78 | 37.74 ± 0.45 | 0.4479 | 22.86 ± 0.26 | 0.2566 |
30 | 2.02 ± 0.09 | 0.0872 | 2.84 | 30.81 ± 0.51 | 0.5069 | 25.06 ± 0.41 | 0.4095 |
40 | 0.63 ± 0.02 | 0.0153 | 0 | 34.34 ± 0.29 | 0.2862 | 23.42 ± 0.56 | 0.5565 |
45 | 0.5 ± 0.04 | 0.0361 | 0 | 32.99 ± 0.32 | 0.3219 | 23.58 ± 0.52 | 0.5179 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosnita, M.; Manciulea, I.; Cazan, C. All-Waste Hybrid Composites with Waste Silicon Photovoltaic Module. Polymers 2020, 12, 53. https://doi.org/10.3390/polym12010053
Cosnita M, Manciulea I, Cazan C. All-Waste Hybrid Composites with Waste Silicon Photovoltaic Module. Polymers. 2020; 12(1):53. https://doi.org/10.3390/polym12010053
Chicago/Turabian StyleCosnita, Mihaela, Ileana Manciulea, and Cristina Cazan. 2020. "All-Waste Hybrid Composites with Waste Silicon Photovoltaic Module" Polymers 12, no. 1: 53. https://doi.org/10.3390/polym12010053
APA StyleCosnita, M., Manciulea, I., & Cazan, C. (2020). All-Waste Hybrid Composites with Waste Silicon Photovoltaic Module. Polymers, 12(1), 53. https://doi.org/10.3390/polym12010053