Silsesquioxane Derivatives as Functional Additives for Preparation of Polyethylene-Based Composites: A Case of Trisilanol Melt-Condensation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.2. General Procedure for Composites Preparation and Characterization
3. Results and Discussion
3.1. Characterisation of the Obtained Modifiers
3.2. SEM-EDS Analysis
3.3. Mechanical Analysis
3.4. Thermomechanical Analysis
3.5. Thermal Analysis
3.6. Rheological Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chanda, M.; Roy, S.K. Industrial Polymers, Specialty Polymers, and Their Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Brinson, H.F.; Brinson, L.C. Polymer Engineering Science and Viscoelasticity Polymer Engineering Science and Viscoelasticity an Introduction; Springer: Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Barnes, M.D.; Fukui, K.; Kaji, K.; Kanaya, T.; Noid, D.W.; Otaigbe, J.U.; Pokrovskii, V.N.; Sumpter, B.G. Polymer Physics and Engineering; Springer: Heidelberg, Germany, 2001. [Google Scholar]
- Manju, V.K.T. Hybrid. Polymer Composite Materials; Woodhead Publishing: Cambridge, UK, 2017. [Google Scholar]
- Jois, Y.H.R.; Harrison, J.B. Modification of Polyolefins: An Overview. J. Macromol. Sci. Part C Polym. Rev. 1996, 36, 433–455. [Google Scholar] [CrossRef]
- Fink, J.K. Handbook of Engineering and Specialty Thermoplastics, Volume 1: Polyolefins and Styrenics, 1st ed.; Wiley-Scrivener: Salem, MA, USA, 2010. [Google Scholar]
- Patwary, F.; Mittal, V. Degradable Polyethylene Nanocomposites with Silica, Silicate and Thermally Reduced Graphene Using Oxo-Degradable pro-Oxidant. Heliyon 2015, 1. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Shan, Y.; Wei, X.; Zhong, S.; Huang, Y.; Yu, H.; Yang, J. Polyethylene/Silica Nanorod Composites with Reduced Dielectric Constant and Enhanced Mechanical Strength. J. Appl. Polym. Sci. 2019, 136, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek, H.; Chylińska, M.; Królikowski, B.; Klimiec, E.; Bajer, D.; Kowalonek, J. Influence of Glass Beads Filler and Orientation Process on Piezoelectric Properties of Polyethylene Composites. J. Mater. Sci. Mater. Electron. 2019, 30, 21032–21047. [Google Scholar] [CrossRef] [Green Version]
- Cheremisinoff, P. Handbook of Engineering Polymeric Materials; Marcel Dekker: New York, NY, USA, 1997. [Google Scholar]
- Kausar, A. State-of-the-Art Overview on Polymer/POSS Nanocomposite. Polym. Plast. Technol. Eng. 2017, 56, 1401–1420. [Google Scholar] [CrossRef]
- Du, Y.; Liu, H. Cage-like Silsesquioxanes-Based Hybrid Materials. Dalt. Trans. 2020, 49, 5396–5405. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S.W.; Chang, F.C. POSS Related Polymer Nanocomposites. Prog. Polym. Sci. 2011, 36, 1649–1696. [Google Scholar] [CrossRef]
- Ayandele, E.; Sarkar, B.; Alexandridis, P. Polyhedral Oligomeric Silsesquioxane (POSS)-Containing Polymer Nanocomposites. Nanomaterials 2012, 2, 445–475. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Ye, Q.; Xu, J. Polyhedral Oligomeric Silsesquioxane-Based Hybrid Materials and Their Applications. Mater. Chem. Front. 2017, 1, 212–230. [Google Scholar] [CrossRef]
- Shi, H.; Yang, J.; You, M.; Li, Z.; He, C. Polyhedral Oligomeric Silsesquioxanes (POSS)-Based Hybrid Soft Gels: Molecular Design, Material Advantages, and Emerging Applications. ACS Mater. Lett. 2020, 2, 296–316. [Google Scholar] [CrossRef]
- Li, Z.; Kong, J.; Wang, F.K.; He, C. Polyhedral Oligomeric Silsesquioxanes (POSSs): An Important Building Block for Organic Optoelectronic Materials. J. Mater. Chem. C 2017, 5, 5283–5298. [Google Scholar] [CrossRef]
- Hartmann-Thompson, C. Applications of Polyhedral Oligomeric Silsesquioxanes; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Cordes, D.B.; Lickiss, P.D.; Rataboul, F. Recent Developments in the Chemistry of Cubic Polyhedral.Pdf. Chem. Rev. 2010, 110, 2081–2173. [Google Scholar] [CrossRef] [PubMed]
- Nicoleta, A.; Xavier, F.; Radovici, C.; Mihaela, D. Influence of Branched or Un-Branched Alkyl Substitutes of POSS on Morphology, Thermal and Mechanical Properties of Polyethylene. Compos. Part B 2013, 50, 98–106. [Google Scholar] [CrossRef]
- Xavier, F.; Mihaela, D.; Nicoleta, A.; Radovici, C.; Nicolae, C. The Influence of Alkyl Substituents of POSS in Polyethylene Nanocomposites. Polymer 2013, 54, 2347–2354. [Google Scholar] [CrossRef]
- Joshi, M.; Butola, B.S. Studies on Nonisothermal Crystallization of HDPE/POSS Nanocomposites. Polymer 2004, 45, 4953–4968. [Google Scholar] [CrossRef]
- Joshi, M.; Butola, B.S.; Simon, G.; Kukaleva, N. Rheological and Viscoelastic Behavior of HDPE/Octamethyl-POSS. Macromolecules 2006, 39, 1839–1849. [Google Scholar] [CrossRef]
- Li, W.; Chen, T.; Guan, C.; Gong, D.; Mu, J.; Chen, Z.; Zhou, Q. Influence of Polyhedral Oligomeric Silsesquioxane Structure on the Disentangled State of Ultrahigh Molecular Weight Polyethylene Nanocomposites during Ethylene in Situ Polymerization. Ind. Eng. Chem. Res. 2015, 54, 1478–1486. [Google Scholar] [CrossRef]
- Lim, S.; Hong, E.; Choi, H.J.; Chin, I. Polyhedral Oligomeric Silsesquioxane and Polyethylene Nanocomposites and Their Physical Characteristics. J. Ind. Eng. Chem. 2010, 16, 189–192. [Google Scholar] [CrossRef]
- Lim, S.; Lee, J.Y.; Choi, H.J.; Chin, I. On Interaction Characteristics of Polyhedral Oligomeric Silsesquioxane Containing Polymer. Polym. Bull. 2015, 72, 2331–2352. [Google Scholar] [CrossRef]
- Guo, M.; Frechette, M.; David, É.; Demarquette, N.R.; Daigle, J. Polyethylene/Polyhedral Oligomeric Silsesquioxanes Composites: Electrical Insulation for High Voltage Power Cables. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 798–807. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Guo, M.; Fréchette, M.; David, É.; Chen, G. Space Charge Properties of LDPE-Based Composites with Three Types of POSS. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 17–20 October 2016; pp. 679–682. [Google Scholar]
- Scapini, P.; Figueroa, C.A.; Amorim, C.L.G.; Machado, G.; Mauler, R.S.; Crespo, J.S.; Oliviera, R.V. Thermal and Morphological Properties of High-Density Polyethylene/Ethylene—Vinyl Acetate Copolymer Composites with Polyhedral Oligomeric Silsesquioxane Nanostructure. Polym. Int. 2010, 59, 175–180. [Google Scholar] [CrossRef]
- Fréchette, M.F.; Ghafarizadeh, S.B.; Ahn, T.T.; Vadeboncoeur, S.; Guo, M.; David, E. LDPE Nanocomposites Containing Functionalized SiO2 Molecular Structures: Properties Associated with a Ball-Milled Preparation. In Proceedings of the 1st International Conference on Electrical Materials and Power Equipment, Xi’an, China, 14–17 May 2017; pp. 221–224. [Google Scholar] [CrossRef]
- Fréchette, M.F.; Guo, M.; Savoie, S.; Vanga-Bouanga, C.; David, E. POSS Dispersion in Polyethylene Microcomposites Containing Quartz and Dielectric Responses. In Proceedings of the Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, Shenzhen, China, 20–23 October 2013; pp. 742–745. [Google Scholar] [CrossRef]
- Niemczyk, A.; Dziubek, K. Study of Thermal Properties of Polyethylene and Polypropylene Nanocomposites with Long Alkyl Chain-Substituted POSS Fillers. J. Therm. Anal. Calorim. 2016, 125, 1287–1299. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Frechette, M.F.; David, E.; Couderc, H.; Savoie, S.; Vanga Bouanga, C.; Demarquette, N.R. Characterization of UHMWPE/POSS Composite Prepared by Ball Milling. In Proceedings of the 2013 IEEE Electrical Insulation Conference, EIC 2013, Ottawa, ON, Canada, 2–5 June 2013; pp. 444–448. [Google Scholar] [CrossRef]
- Guo, M.; Fréchette, M.; David, É.; Demarquette, N.R. Influence of Fabrication Techniques on the Dielectric Properties of PE/POSS Polymeric Composites. In Proceedings of the 2016 Electrical Insulation Conference (EIC), Montreal, QC, Canada, 19–22 June 2016; pp. 297–300. [Google Scholar]
- Guo, M.; Fréchette, M.; David, É.; Demarquette, N.R.; Daigle, J. Polyethylene-Based Nanodielectrics Containing Octaisobutyl Polyhedral Oligomeric SilSesquioxanes Obtained by Solution Blending in Xylene. In Proceedings of the 2014 Annual Report Conference on Electrical Insulation and Dielectric Phenomena Polyethylene-Based, Des Moines, IA, USA, 19–22 October 2014; pp. 731–734. [Google Scholar]
- Guo, M.; Frechette, M.; Demarquette, N.R.; David, E. Polyethylene-Based Nanodielectric Containing Octaisobutyl Polyhedral Oligomeric SilSesquioxanes Obtained by Hexane Slurry Blending. In Proceedings of the 2014 International Symposium on Electrical Insulating Materials, Niigata, Japan, 1–5 June 2014; pp. 61–64. [Google Scholar]
- Guo, M.; Fréchette, M.F.; David, E.; Couderc, H.; Demarquette, N.R. Effects of Stearic Acid and Thermal Treatment on Morphology and Dielectric Properties of UHMWPE/POSS Composites Prepared by Ball Milling. In Proceedings of the 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena Effects, Shenzhen, China, 20–23 October 2013; pp. 760–763. [Google Scholar]
- Safarikova, B.; Kalendova, A.; Habrova, V.; Zatloukalova, S.; Machovsky, M. Synergistic Effect between Polyhedral Oligomeric Silsesquioxane and Flame Retardants. AIP Conf. Proc. 2014, 1599, 106–109. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Chen, G.; Guo, M.; David, É.; Fréchette, M. Space Charge Properties of UHMWPE/OibPOSS Composites. In Proceedings of the 2015 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Ann Arbor, MI, USA, 18–21 October 2015; pp. 543–546. [Google Scholar]
- Heeley, E.L.; Hughes, D.J.; El, Y.; Taylor, P.G.; Bassindale, A.R. Morphology and Crystallization Kinetics of Polyethylene/Long Alkyl-Chain Substituted Polyhedral Oligomeric Silsesquioxanes (POSS) Nanocomposite Blends: A SAXS/WAXS Study. Eur. Polym. J. 2014, 51, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Barczewski, M.; Czarnecka-Komorowska, D.; Andrzejewski, J.; Sterzyński, T.; Dutkiewicz, M.; Dudziec, B. Właściwości Przetwórcze Termoplastycznych Tworzyw Polimerowych Modyfikowanych Silseskwioksanami (POSS). Polim. Polym. 2013, 58, 805–815. [Google Scholar] [CrossRef]
- Heeley, E.L.; Hughes, D.J.; Taylor, P.G.; Bassindale, A.R. Crystallization and Morphology Development in Polyethylene-Octakis(n-Octadecyldimethylsiloxy)-Octasilsesquioxane Nanocomposite Blends. RSC Adv. 2015, 5, 34709–34719. [Google Scholar] [CrossRef] [Green Version]
- Fréchette, M.; Guo, M.; David, É.; Min, D.; Li, S. The Dielectric Response of Polyethylene/Polyhedral Oligomeric Silsesquioxanes Composites at Various Temperatures. In Proceedings of the 2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP), Fort Worth, TX, USA, 22–25 October 2017; pp. 501–504. [Google Scholar]
- Guo, M.; David, É.; Fréchette, M.; Demarquette, N.R. Polyethylene/Polyhedral Oligomeric Silsesquioxanes Composites: Dielectric, Thermal and Rheological Properties. Polymer 2017, 115, 60–69. [Google Scholar] [CrossRef]
- Guo, M.; David, É.; Fréchette, M.; Demarquette, N.R. Low-Density Polyethylene/Polyhedral Oligomeric Silsesquioxanes Composites Obtained by Extrusion. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Eaton Chelsea Hotel, Toronto, ON, Canada, 16–19 October 2016; pp. 647–650. [Google Scholar]
- Hato, M.J.; Ray, S.S.; Luyt, A.S. Nanocomposites Based on Polyethylene and Polyhedral Oligomeric Silsesquioxanes, 1 – Microstructure, Thermal and Thermomechanical Properties. Mol. Mater. Eng. 2008, 293, 752–762. [Google Scholar] [CrossRef]
- Hato, M.J.; Ray, S.S.; Africa, S.; Luyt, A.S. Melt-State Viscoelastic Properties of POSS-Containing Polyethylene Melt-State Viscoelastic Properties of POSS-Containing Polyethylene Nanocomposites. Adv. Sci. Lett. 2011, 4, 3585–3589. [Google Scholar] [CrossRef]
- Nguyen, T.-A.; Mannle, F.; Gregersen, Ø.W. Polyethylene/Octa-(Ethyl Octadeca-10,13 Dienoamide) Silsesquioxane Blends and the Adhesion Strength Po Paperboard. Int. J. Adhes. Adhes. 2012, 38, 117–124. [Google Scholar] [CrossRef]
- Nguyen, T.; Gregersen, Ø.W.; Männle, F. Thermal Oxidation of Polyolefins by Mild Pro-Oxidant Additives Based on Iron Carboxylates and Lipophilic Amines: Degradability in the Absence of Light and Effect on the Adhesion to Paperboard. Polymers 2015, 7, 1522–1540. [Google Scholar] [CrossRef]
- Grala, M.; Bartczak, Z.; Gadzinowska, K. Polyolefins—Polyhedral Oligomeric Silsesquioxanes (Poss) Nanocomposites: Mechanical Properties, Morphology and Thermal Behaviour. In Proceedings of the ECCM15—15th European Conference on Composite Materials, Venice, Italy, 24–28 June 2012; pp. 1–2. [Google Scholar]
- Grala, M.; Bartczak, Z. Morphology and Mechanical Properties of High Density Polyethylene-POSS Hybrid Nanocomposites Obtained by Reactive Blending. Polym. Eng. Sci. 2014, 55, 2058–2072. [Google Scholar] [CrossRef]
- Morici, E.; Di Bartolo, A.; Arrigo, R.; Tzankova Dintcheva, N. POSS Grafting on Polyethylene and Maleic Anhydride-Grafted Polyethylene by One-Step Reactive Melt Mixing. Adv. Polym. Technol. 2016, 21673, 1–9. [Google Scholar] [CrossRef]
- Panaitescu, D.M.; Frone, A.N.; Radovici, C.; Nicolae, C.; Perrin, F.X. Influence of Octyl Substituted Octakis(Dimethylsiloxy)Octasilsesquioxane on the Morphology and Thermal and Mechanical Properties of Low Density Polyethylene. Polym. Int. 2014, 63, 228–236. [Google Scholar] [CrossRef]
- Brząkalski, D.; Przekop, R.E.; Dobrosielska, M.; Sztorch, B.; Marciniak, P.; Marciniec, B. Highly Bulky Spherosilicates as Functional Additives for Polyethylene Processing—Influence on Mechanical and Thermal Properties. Polym. Compos. 2020, 1–14. [Google Scholar] [CrossRef]
- Cicala, G.; Blanco, I.; Latteri, A.; Ognibene, G.; Bottino, F.A.; Elena, M. PES/POS Soluble Veils as Advanced Modifiers for Multifunctional Fiber Reinforced Composites. Polymers 2017, 9, 281. [Google Scholar] [CrossRef] [Green Version]
- Vieira, E.G.; Dal-Bó, A.G.; Frizon, T.E.A.; Dias Filho, N.L. Synthesis of Two New Mo(II) Organometallic Catalysts Immobilized on POSS for Application in Olefin Oxidation Reactions. J. Organomet. Chem. 2017, 834, 73–82. [Google Scholar] [CrossRef]
- Ye, M.; Wu, Y.; Zhang, W.; Yang, R. Synthesis of Incompletely Caged Silsesquioxane (T7-POSS) Compounds via a Versatile Three-Step Approach. Res. Chem. Intermed. 2018, 44, 4277–4294. [Google Scholar] [CrossRef]
- Ervithayasuporn, V.; Wang, X.; Kawakami, Y. Synthesis and Characterization of Highly Pure Azido-Functionalized Polyhedral Oligomeric Silsesquioxanes (POSS). Chem. Commun. 2009, 60, 5130–5132. [Google Scholar] [CrossRef]
- Lee, H.; Hong, S.H. Polyhedral Oligomeric Silsesquioxane-Conjugated Bis(Diphenylphosphino)Amine Ligand for Chromium(III) Catalyzed Ethylene Trimerization and Tetramerization. Appl. Catal. A Gen. 2018, 560, 21–27. [Google Scholar] [CrossRef]
- Mirabella, F.M.; Bafna, A. Determination of the Crystallinity of Polyethylene/α-Olefin Copolymers by Thermal Analysis: Relationship of the Heat of Fusion of 100% Polyethylene Crystal and the Density. J. Polym. Sci. Part B Polym. Phys. 2002, 40, 1637–1643. [Google Scholar] [CrossRef]
- Zeng, J.; Bennett, C.; Jarrett, W.L.; Kumar, S.; Mathias, L.J.; Schiraldi, D.A. Structural Changes in Trisilanol POSS during Nanocomposite Melt Processing Nanocomposite Melt Processing. Compos. Interfaces 2005, 11, 673–685. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, W.; Cheng, S.Z.; Wesdemiotis, C. Analysis of Monodisperse, Sequence-Defined, and POSS-Functionalized Polyester Copolymers by MALDI Tandem Mass Spectrometry. Eur. J. Mass Spectrom. Chichester Eng. 2019, 25, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Xu, J.; Zhang, M.; He, J.; Ni, P. Versatile Construction of Single-Tailed Giant Surfactants with Hydrophobic Poly(ε-Caprolactone) Tail and Hydrophilic POSS Head. Polymers 2019, 11, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karuppasamy, K.; Prasanna, K.; Vikraman, D.; Kim, H.S.; Kathalingam, A.; Mitu, L.; Rhee, H.W. A Rapid One-Pot Synthesis of Novel High-Purity Methacrylic Phosphonic Acid (PA)-Based Polyhedral Oligomeric Silsesquioxane (POSS) Frameworks via Thiol-Ene Click Reaction. Polymers 2017, 9, 192. [Google Scholar] [CrossRef]
- Sheen, Y.C.; Lu, C.H.; Huang, C.F.; Kuo, S.W.; Chang, F.C. Synthesis and Characterization of Amorphous Octakis-Functionalized Polyhedral Oligomeric Silsesquioxanes for Polymer Nanocomposites. Polymer 2008, 49, 4017–4024. [Google Scholar] [CrossRef]
- Xavier Perrin, F.; Viet Nguyen, T.B.; Margaillan, A. Linear and Branched Alkyl Substituted Octakis(Dimethylsiloxy) Octasilsesquioxanes: WAXS and Thermal Properties. Eur. Polym. J. 2011, 47, 1370–1382. [Google Scholar] [CrossRef]
- Camino, G.; Lomakin, S.M.; Lageard, M. Thermal Polydimethylsiloxane Degradation. Part 2. The Degradation Mechanisms. Polymer 2002, 43, 2011–2015. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, W.; Yao, R.; Jiang, B. Thermal Stability Enhancement Mechanism of Poly(Dimethylsiloxane) Composite by Incorporating Octavinyl Polyhedral Oligomeric Silsesquioxanes. Polym. Degrad. Stab. 2013, 98, 109–114. [Google Scholar] [CrossRef]
- Chatgilialoglu, C. Structural and Chemical Properties of Silyl Radicals. Chem. Rev. 1995, 95, 1229–1251. [Google Scholar] [CrossRef]
- Salamone, J.C. Concise Polymeric Materials Encyclopedia, 1st ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Bouza, R.; Barral, L.; Díez, F.J.; López, J.; Montero, B.; Rico, M.; Ramírez, C. Study of Thermal and Morphological Properties of a Hybrid System, IPP/POSS. Effect of Flame Retardance. Compos. Part B Eng. 2014, 58, 566–572. [Google Scholar] [CrossRef]
Additive | Sample | Concentration of Additive (%) | |||
---|---|---|---|---|---|
0.1 | 0.5 | 1.0 | 1.5 | ||
Tensile Strength (MPa) | |||||
Neat PE | Dumbbell | 13.08 ± 0.26 | |||
Foil | 19.70 ± 0.95 | ||||
SSQ-8Cl | Dumbbell | 13.11 ± 0.33 | 13.29 ± 0.19 | 13.22 ± 0.34 | - |
Foil | 16.79 ± 0.77 | 15.99 ± 0.88 | 15.87 ± 0.81 | - | |
iBu7SSQ-Cl | Dumbbell | 13.41 ± 0.12 | 13.29 ± 0.21 | 13.14 ± 0.27 | - |
Foil | 14.44 ± 0.69 | 16.44 ± 0.43 | 15.45 ± 0.71 | - | |
iBu7SSQ-NH2 | Dumbbell | 14.43 ± 0.22 | 14.20 ± 0.49 | 14.06 ± 0.19 | - |
Foil | 18.17 ± 0.39 | 16.42 ± 0.90 | 16.62 ± 0.77 | - | |
iBu7SSQ-Vi | Dumbbell | - | 13.00 ± 0.34 | 12.98 ± 0.32 | 12.52 ± 0.48 |
Foil | - | 16.31 ± 0.94 | 14.49 ± 0.86 | 14.91 ± 0.80 | |
iBu7SSQ-3OH | Dumbbell | - | 14.41 ± 0.24 | 14.36 ± 0.18 | 14.33 ± 0.32 |
Foil | - | 15.83 ± 0.68 | 20.81 ± 0.80 | 19.12 ± 0.70 |
Additive | Sample | Concentration of Additive (%) | |||
---|---|---|---|---|---|
0.1 | 0.5 | 1.0 | 1.5 | ||
Young’s Modulus (MPa) | |||||
Neat PE | Dumbbell | 91.68 ± 3.46 | |||
Foil | 213.82 ± 14.59 | ||||
SSQ-8Cl | Dumbbell | 92.92 ± 5.31 | 95.93 ± 4.71 | 97.71 ± 5.39 | - |
Foil | 166.08 ± 8.70 | 155.35 ± 6.13 | 164.17 ± 9.64 | - | |
iBu7SSQ-Cl | Dumbbell | 94.34 ± 3.08 | 95.86 ± 4.24 | 92.73 ± 2.01 | - |
Foil | 150.74 ± 8.08 | 168.26 ± 8.74 | 141.10 ± 7.47 | - | |
iBu7SSQ-NH2 | Dumbbell | 108.92 ± 2.70 | 101.80 ± 4.87 | 103.75 ± 4.77 | - |
Foil | 209.89 ± 11.23 | 159.42 ± 6.48 | 166.67 ± 8.39 | - | |
iBu7SSQ-Vi | Dumbbell | - | 92.53 ± 4.84 | 92.08 ± 3.55 | 98.63 ± 4.46 |
Foil | - | 151.69 ± 9.03 | 166.20 ± 9.40 | 150.88 ± 11.05 | |
iBu7SSQ-3OH | Dumbbell | - | 109.09 ± 2.08 | 109.72 ± 3.40 | 105.67 ± 2.82 |
Foil | - | 167.58 ± 7.14 | 194.06 ± 9.79 | 110.74 ± 6.35 |
Additive | Sample | Concentration of Additive (%) | |||
---|---|---|---|---|---|
0.1 | 0.5 | 1.0 | 1.5 | ||
Elongation at Maximum Load (%) | |||||
Neat PE | Dumbbell | 60.38 ± 1.77 | |||
Foil | 176.69 ± 11.63 | ||||
SSQ-8Cl | Dumbbell | 59.97 ± 2.84 | 59.25 ± 2.15 | 57.97 ± 3.41 | - |
Foil | 166.05 ± 7.83 | 142.70 ± 6.30 | 158.96 ± 9.29 | - | |
iBu7SSQ-Cl | Dumbbell | 60.29 ± 2.14 | 59.45 ± 2.06 | 59.86 ± 1.15 | - |
Foil | 121.55 ± 6.92 | 112.41 ± 5.33 | 101.40 ± 5.23 | - | |
iBu7SSQ-NH2 | Dumbbell | 57.69 ±1.18 | 59.28 ± 2.52 | 58.03 ± 2.02 | - |
Foil | 161.07 ± 6.13 | 159.16 ± 7.11 | 137.63 ± 5.77 | - | |
iBu7SSQ-Vi | Dumbbell | - | 59.05 ±2.02 | 59.28 ± 3.01 | 53.51 ± 1.32 |
Foil | - | 158.60 ± 8.02 | 141.78 ± 8.28 | 133.73 ± 9.06 | |
iBu7SSQ-3OH | Dumbbell | - | 57.13 ± 0.76 | 56.52 ± 1.28 | 57.88 ± 0.90 |
Foil | - | 113.53 ± 5.41 | 124.40 ± 6.13 | 76.24 ± 4.12 |
Measurements in Air Atmosphere | |||||||
Additive Conc. [%] | T (°C) | Additive Type | |||||
Neat PE | SSQ-8Cl | iBu7SSQ-Cl | iBu7SSQ-NH2 | iBu7SSQ-Vi | iBu7SSQ-3OH | ||
0.1 | T5% | 348.3 | 355.4 | 355.6 | 362 | - | - |
Tonset | 382.4 | 379.4 | 380.2 | 400.3 | - | - | |
TDTG | 418.3 | 422.6 | 419.8 | 448.5 | - | - | |
0.5 | T5% | 348.3 | 373.3 | 362.3 | 365.5 | 366.6 | 364.7 |
Tonset | 382.4 | 399.4 | 391.7 | 434.7 | 398.5 | 396.9 | |
TDTG | 418.3 | 455.8 | 440.8 | 445.4 | 443.9 | 436.5 | |
1.0 | T5% | 348.3 | 362.5 | 354.4 | 381.4 | 359.9 | 369.0 |
Tonset | 382.4 | 392.1 | 394.3 | 448.4 | 389.7 | 404.6 | |
TDTG | 418.3 | 439.1 | 433.7 | 458.1 | 447.2 | 438.5 | |
1.5 | T5% | 348.3 | - | - | - | 364.7 | 372.8 |
Tonset | 382.4 | - | - | - | 402.5 | 404.7 | |
TDTG | 418.3 | - | - | - | 444.4 | 441.9 | |
Measurements in Nitrogen Atmosphere | |||||||
Additive Conc. [%] | T (°C) | Additive Type | |||||
Neat PE | SSQ-8Cl | iBu7SSQ-Cl | iBu7SSQ-NH2 | iBu7SSQ-Vi | iBu7SSQ-3OH | ||
0.1 | T5% | 441.8 | 447.4 | 446.5 | 444.9 | - | - |
Tonset | 469.3 | 479.8 | 473.8 | 470.6 | - | - | |
TDTG | 477.9 | 488.2 | 487.9 | 485.2 | - | - | |
0.5 | T5% | 441.8 | 444.7 | 449.1 | 448.7 | 445.2 | 445.7 |
Tonset | 469.3 | 472.8 | 462.9 | 473.2 | 476.2 | 470.5 | |
TDTG | 477.9 | 487.2 | 489 | 487.8 | 489.8 | 486.6 | |
1.0 | T5% | 441.8 | 443.7 | 445.5 | 445.3 | 445.3 | 445.1 |
Tonset | 469.3 | 476.2 | 472.4 | 460 | 472.0 | 471.1 | |
TDTG | 477.9 | 487.7 | 489.6 | 486.3 | 490.1 | 487.2 | |
1.5 | T5% | 441.8 | - | - | - | 445.1 | 443.7 |
Tonset | 469.3 | - | - | - | 476.0 | 474.4 | |
TDTG | 477.9 | - | - | - | 490.3 | 489.2 |
Additive | Concentration of Additive (%) | Concentration of Additive (%) | ||||||
---|---|---|---|---|---|---|---|---|
0.1 | 0.5 | 1.0 | 1.5 | 0.1 | 0.5 | 1.0 | 1.5 | |
Crystallisation Temperature (°C) | Melting Temperature (°C) | |||||||
Neat PE | 98.8 | 112.4 | ||||||
SSQ-8Cl | 99.0 | 99.5 | 99.8 | - | 113.4 | 112.2 | 111.8 | - |
iBu7SSQ-Cl | 99.3 | 99.1 | 99.7 | - | 112.3 | 112.5 | 111.8 | - |
iBu7SSQ-NH2 | 99.9 | 99.4 | 100.0 | - | 112.0 | 111.8 | 111.5 | - |
iBu7SSQ-Vi | - | 99.5 | 99.0 | 98.4 | - | 112.6 | 113.1 | 113.8 |
iBu7SSQ-3OH | - | 98.9 | 99.2 | 99.8 | - | 112.7 | 113.0 | 112.0 |
Additive | Concentration of Additive (%) | |||
---|---|---|---|---|
0.1 | 0.5 | 1.0 | 1.5 | |
MFR (g/10 min) | ||||
Neat PE | 2.02 | |||
SSQ-8Cl | 1.83 | 1.88 | 1.90 | - |
iBu7SSQ-Cl | 1.87 | 1.92 | 1.99 | - |
iBu7SSQ-NH2 | 1.87 | 1.91 | 1.98 | - |
iBu7SSQ-Vi | - | 1.91 | 1.99 | 2.03 |
iBu7SSQ-3OH | - | 1.86 | 1.86 | 1.89 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brząkalski, D.; Przekop, R.E.; Sztorch, B.; Jakubowska, P.; Jałbrzykowski, M.; Marciniec, B. Silsesquioxane Derivatives as Functional Additives for Preparation of Polyethylene-Based Composites: A Case of Trisilanol Melt-Condensation. Polymers 2020, 12, 2269. https://doi.org/10.3390/polym12102269
Brząkalski D, Przekop RE, Sztorch B, Jakubowska P, Jałbrzykowski M, Marciniec B. Silsesquioxane Derivatives as Functional Additives for Preparation of Polyethylene-Based Composites: A Case of Trisilanol Melt-Condensation. Polymers. 2020; 12(10):2269. https://doi.org/10.3390/polym12102269
Chicago/Turabian StyleBrząkalski, Dariusz, Robert E. Przekop, Bogna Sztorch, Paulina Jakubowska, Marek Jałbrzykowski, and Bogdan Marciniec. 2020. "Silsesquioxane Derivatives as Functional Additives for Preparation of Polyethylene-Based Composites: A Case of Trisilanol Melt-Condensation" Polymers 12, no. 10: 2269. https://doi.org/10.3390/polym12102269
APA StyleBrząkalski, D., Przekop, R. E., Sztorch, B., Jakubowska, P., Jałbrzykowski, M., & Marciniec, B. (2020). Silsesquioxane Derivatives as Functional Additives for Preparation of Polyethylene-Based Composites: A Case of Trisilanol Melt-Condensation. Polymers, 12(10), 2269. https://doi.org/10.3390/polym12102269