The Role of Interfacial Interactions on the Functional Properties of Ethylene–Propylene Copolymer Containing SiO2 Nanoparticles
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Sample Preparation
2.2. Characterization
2.2.1. Fourier Transform Infrared (FTIR) Spectroscopy
2.2.2. Morphological and Mechanical Measurements
2.2.3. Thermogravimetric Method
2.2.4. UV—Transparency
3. Results and Discussion
3.1. Morphological Properties
3.2. FTIR
3.3. Tensile Properties
3.4. Thermogravimetric Analysis
3.5. UV-Visible Transparency
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shadduck, J. Elastomeric Magnetic Nanocomposite Biomedical Devices. U.S. Patent US20,050,267,321A1, 1 December 2005. [Google Scholar]
- Massaro, A.; Spano, F.; Missori, M.; Malvindi, M.A.; Cazzato, P.; Cingolani, R.; Athanassiou, A. Flexible nanocomposites with all-optical tactile sensing capability. RSC Adv. 2014, 4, 2820–2825. [Google Scholar] [CrossRef]
- Taraghi, I.; Paszkiewicz, S.; Grebowicz, J.; Fereidoon, A.; Roslaniec, Z. Nanocomposites of polymeric biomaterials containing carbonate groups: An overview. Macromol. Mater. Eng. 2017, 302, 1700042. [Google Scholar] [CrossRef]
- Guo, B.; Tang, Z.; Zhang, L. Transport performance in novel elastomer nanocomposites: Mechanism, design and control. Prog. Polym. Sci. 2016, 61, 29–66. [Google Scholar] [CrossRef]
- Ozbas, B.; O’Neill, C.D.; Register, R.A.; Aksay, I.A.; Prud’Homme, R.K.; Adamson, D.H. Multifunctional elastomer nanocomposites with functionalized graphene single sheets. J. Polym. Sci. Part. B Polym. Phys. 2012, 50, 910–916. [Google Scholar] [CrossRef]
- Xing, W.; Tang, M.; Wu, J.R.; Huang, G.S.; Li, H.; Lei, Z.; Fu, X.; Li, H. Multifunctional properties of graphene/rubber nanocomposites fabricated by a modified latex compounding method. Compos. Sci. Technol. 2014, 99, 67–74. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, Y.; Zeng, Z.; Zhu, J.; Wei, Y.; Li, F.; Liu, L. Effect of ZnO nanoparticles doped graphene on static and dynamic mechanical properties of natural rubber composites. Compos. Part. A Appl. Sci. Manuf. 2015, 70, 35–44. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Graphene/elastomer nanocomposites. Carbon 2015, 95, 460–484. [Google Scholar] [CrossRef]
- Hofmann, D.; Thomann, R.; Mülhaupt, R. Thermoplastic SEBS elastomer nanocomposites reinforced with functionalized graphene dispersions. Macromol. Mater. Eng. 2018, 303, 1700324. [Google Scholar] [CrossRef]
- Song, S.H. High performance magnetic elastomer nanocomposites. Compos. Interfaces 2018, 25, 919–927. [Google Scholar] [CrossRef]
- Das, A.; Bansod, N.D.; Kapgate, B.P.; Rajkumar, K.; Das, A. Incorporation of titania nanoparticles in elastomer matrix to develop highly reinforced multifunctional solution styrene butadiene rubber composites. Polymer 2019, 162, 1–10. [Google Scholar] [CrossRef]
- Vaimakis-Tsogkas, D.; Bekas, D.; Giannakopoulou, T.; Todorova, N.; Paipetis, A.; Barkoula, N.-M. Effect of TiO2 addition/coating on the performance of polydimethylsiloxane-based silicone elastomers for outdoor applications. Mater. Chem. Phys. 2019, 223, 366–373. [Google Scholar] [CrossRef]
- Lipińska, M.; Imiela, M. Morphology, rheology and curing of (ethylene-propylene elastomer/hydrogenate acrylonitrile-butadiene rubber) blends reinforced by POSS and organoclay. Polym. Test. 2019, 75, 26–37. [Google Scholar] [CrossRef]
- Kumar, V.; Lee, D. Effects of purity in single-wall carbon nanotubes into rubber nanocomposites. Chem. Phys. Lett. 2019, 715, 195–203. [Google Scholar] [CrossRef]
- Ning, N.; Mi, T.; Chu, G.; Zhang, L.; Liu, L.; Tian, M.; Yu, H.T.; Lu, Y. A quantitative approach to study the interface of carbon nanotubes/elastomer nanocomposites. Eur. Polym. J. 2018, 102, 10–18. [Google Scholar] [CrossRef]
- Kong, L.; Li, F.; Wang, F.; Miao, Y.; Huang, X.; Zhu, H.; Lu, Y. High-performing multi-walled carbon nanotubes/silica nanocomposites for elastomer application. Compos. Sci. Technol. 2018, 162, 23–32. [Google Scholar] [CrossRef]
- Le, H.; Sriharish, M.; Henning, S.; Klehm, J.; Menzel, M.; Frank, W.; Wießner, S.; Das, A.; Stöckelhuber, K.-W.; Heinrich, G.; et al. Dispersion and distribution of carbon nanotubes in ternary rubber blends. Compos. Sci. Technol. 2014, 90, 180–186. [Google Scholar] [CrossRef]
- Ning, N.; Cheng, D.; Yang, J.; Liu, L.; Tian, M.; Wu, Y.; Wang, W.; Zhang, L.; Lu, Y. New insight on the interfacial interaction between multiwalled carbon nanotubes and elastomers. Compos. Sci. Technol. 2017, 142, 214–220. [Google Scholar] [CrossRef]
- Sahu, G.; Gaba, V.K.; Panda, S.; Acharya, B.; Mahapatra, S.P. Thermal conductivity, thermal diffusivity, and volumetric heat capacity of silicone elastomer nanocomposites: Effect of temperature and MWCNTand nano-graphite loadings. High Perform. Polym. 2018, 30, 365–374. [Google Scholar] [CrossRef]
- Mensah, B.; Gupta, K.C.; Kim, H.; Wang, W.; Jeong, K.U.; Nah, C. Graphene-reinforced elastomeric nanocomposites: A review. Polym. Test. 2018, 68, 160–184. [Google Scholar] [CrossRef]
- Niu, D.; Jiang, W.; Ye, G.; Wang, K.; Yin, L.; Shi, Y.; Chen, B.; Luo, F.; Liu, H. Graphene-elastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection. Mater. Res. Bull. 2018, 102, 92–99. [Google Scholar] [CrossRef]
- Gomez, J.; Recio, I.; Navas, A.; Villaro, E.; Galindo, B.; Ortega-Murguialday, A. Processing influence on dielectric, mechanical, and electrical properties of reduced graphene oxide-TPU nanocomposites. J. Appl. Polym. Sci. 2019, 136, 47220. [Google Scholar] [CrossRef]
- Frasca, D.; Schulze, D.; Wachtendorf, V.; Huth, C.; Schartel, B. Multifunctional multilayer graphene/elastomer nanocomposites. Eur. Polym. J. 2015, 71, 99–113. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, J.; Liao, R.; Yang, G.; Wu, X.; Tang, Z.; Guo, B.; Zhang, L.; Ma, Y.; Nie, Q.; et al. Rational design of covalent interfaces for graphene/elastomer nanocomposites. Compos. Sci. Technol. 2016, 132, 68–75. [Google Scholar] [CrossRef]
- Kang, H.; Tang, Y.; Yao, L.; Yang, F.; Fang, Q.; Hui, D. Fabrication of graphene/natural rubber nanocomposites with high dynamic properties through convenient mechanical mixing. Compos. Part B Eng. 2017, 112, 1–7. [Google Scholar] [CrossRef]
- Taraghi, I.; Fereidoon, A.; Paszkiewicz, S.; Szymczyk, A.; Chylinska, R.; Kochmanska, A.; Roslaniec, Z. Microstructure, thermal stability, and mechanical properties of modified polycarbonate with polyolefin and silica nanoparticles. Polym. Adv. Technol. 2017, 28, 1794–1803. [Google Scholar] [CrossRef]
- Taraghi, I.; Fereidoon, A.; Paszkiewicz, S.; Roslaniec, Z. Electrically conductive polycarbonate/ethylene-propylene copolymer/multi-walled carbon nanotubes nanocomposites with improved mechanical properties. J. Appl. Polym. Sci. 2017, 134, 44661. [Google Scholar] [CrossRef]
- Kumar, A.P.; Singh, R.P. Novel hybrid of clay, cellulose, and thermoplastics. I. Preparation and characterization of composites of ethylene–propylene copolymer. J. Appl. Polym. Sci. 2007, 104, 2672–2682. [Google Scholar] [CrossRef]
- Chen, J.; Wang, G.; Zeng, X.; Zhao, H.; Cao, D.; Yun, J.; Tan, C.K. Toughening of polypropylene-ethylene copolymer with nanosized CaCO3 and styrene-butadiene-styrene. J. Appl. Polym. Sci. 2004, 94, 796–802. [Google Scholar] [CrossRef]
- Planes, E.; Duchet, J.; Maazouz, A.; Gérard, J.F. Characterization of new formulations for the rotational molding based on ethylene–propylene copolymer/graphite nanocomposites. Polym. Eng. Sci. 2008, 48, 723–731. [Google Scholar] [CrossRef]
- Al-Malaika, S.; Kong, W. Reactive processing of polymers: Effect of in situ compatibilisation on characteristics of blends of polyethylene terephthalate and ethylene-propylene rubber. Polymer 2005, 46, 209–228. [Google Scholar] [CrossRef]
- Gulmine, J.; Janissek, P.; Heise, H.; Akcelrud, L. Polyethylene characterization by FTIR. Polym. Test. 2002, 21, 557–563. [Google Scholar] [CrossRef]
- Yu, W.; Shi, J.; Wang, L.; Chen, X.; Min, M.; Wang, L.; Liu, Y. The structure and mechanical property of silane-graftedpolyethylene/SiO2 nanocomposite fiber rope. Aquacul. Fish 2017, 2, 34–38. [Google Scholar] [CrossRef]
- Peng, Z.; Kong, L.; Li, S.D.; Chen, Y.; Huang, M.F. Self-assembled natural rubber/silica nanocomposites: Its preparation and characterization. Compos. Sci. Technol. 2007, 67, 3130–3139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hong, Y.; Zhang, T.; Li, C. A novel approach to prepare PBT nanocomposites with elastomer-modified SiO2 particles. Polym. Compos. 2009, 30, 673–679. [Google Scholar] [CrossRef]
- Zhang, B.; Wong, J.S.P.; Shi, D.; Yam, R.C.M.; Li, R.K.Y. Investigation on the mechanical performances of ternary nylon 6/SEBS elastomer/nano-SiO2 hybrid composites with controlled morphology. J. Appl. Polym. Sci. 2010, 115, 469–479. [Google Scholar] [CrossRef]
- Taraghi, I.; Fereidoon, A.; Paszkiewicz, S.; Roslaniec, Z. Nanocomposites based on polymer blends: Enhanced interfacial interactions in polycarbonate/ethylene-propylene copolymer blends with multi-walled carbon nanotubes. Compos. Interfaces 2018, 25, 275–286. [Google Scholar] [CrossRef]
- Lu, N.; Lu, X.; Jin, X.; Lü, C. Preparation and characterization of UV-curable ZnO/polymer nanocomposite films. Polym. Int. 2007, 56, 138–143. [Google Scholar] [CrossRef]
- Li, Y.Q.; Fu, S.Y.; Mai, Y.W. Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency. Polymer 2006, 47, 2127–2132. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, S.; Xu, X.; Hu, J. Transparent and UV-shielding ZnO@PMMA nanocomposite films. Opt. Mater. 2013, 36, 169–172. [Google Scholar] [CrossRef]
- Tu, Y.; Zhou, L.; Jin, Y.; Gao, C.; Ye, Z.Z.; Yang, Y.F.; Wang, Q.L. Transparent and flexible thin films of ZnO-polystyrene nanocomposite for UV-shielding applications. J. Mater. Chem. 2010, 20, 1594–1599. [Google Scholar] [CrossRef]
Samples | σ300% (MPa) | σB (MPa) | εB (%) |
---|---|---|---|
EPC | 3.7 | 10.5 | 740 |
EPC/SiO2 (1%) | 3.3 | 14.5 | 947 |
EPC/SiO2 (3%) | 3.9 | 15.0 | 865 |
EPC/SiO2 (5%) | 4.6 | 15.9 | 721 |
Samples | T5% °C | T25% °C | T50% °C | T90% °C | DTG1 °C | DTG2 °C |
---|---|---|---|---|---|---|
EPC | 273 | 316 | 347 | 433 | 349 | 435 |
EPC/SiO2 (1%) | 292 | 342 | 373 | 407 | 391 | 461 |
EPC/SiO2 (3%) | 279 | 333 | 375 | 409 | 400 | 455 |
EPC/SiO2 (5%) | 296 | 318 | 397 | 431 | 421 | 475 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taraghi, I.; Paszkiewicz, S.; Irska, I.; Pypeć, K.; Piesowicz, E. The Role of Interfacial Interactions on the Functional Properties of Ethylene–Propylene Copolymer Containing SiO2 Nanoparticles. Polymers 2020, 12, 2308. https://doi.org/10.3390/polym12102308
Taraghi I, Paszkiewicz S, Irska I, Pypeć K, Piesowicz E. The Role of Interfacial Interactions on the Functional Properties of Ethylene–Propylene Copolymer Containing SiO2 Nanoparticles. Polymers. 2020; 12(10):2308. https://doi.org/10.3390/polym12102308
Chicago/Turabian StyleTaraghi, Iman, Sandra Paszkiewicz, Izabela Irska, Krzysztof Pypeć, and Elżbieta Piesowicz. 2020. "The Role of Interfacial Interactions on the Functional Properties of Ethylene–Propylene Copolymer Containing SiO2 Nanoparticles" Polymers 12, no. 10: 2308. https://doi.org/10.3390/polym12102308
APA StyleTaraghi, I., Paszkiewicz, S., Irska, I., Pypeć, K., & Piesowicz, E. (2020). The Role of Interfacial Interactions on the Functional Properties of Ethylene–Propylene Copolymer Containing SiO2 Nanoparticles. Polymers, 12(10), 2308. https://doi.org/10.3390/polym12102308