Reliability of Free Inflation and Dynamic Mechanics Tests on the Prediction of the Behavior of the Polymethylsilsesquioxane–High-Density Polyethylene Nanocomposite for Thermoforming Applications
Abstract
:1. Introduction
2. Material
3. Experimental Testing
3.1. Bubble Inflation Testing
3.2. Dynamic Mechanical Testing
4. Viscoelastic Behavior Model
- The state of plane stress;
- Material is incompressible.
5. Viscoelastic Model Identification
5.1. PMSQ–HDPE Viscoelastic Behavior Identification Conforms to Bubble Testing
5.2. PMSQ–HDPE Viscoelastic Behavior Identification Conform to DMA Testing
6. Reliability of Tests on the Viscoelastic Behavior of the PMSQ–HDPE on Thermoforming
6.1. Finite Element Analysis
- : Global nodal external force vectors
- Global nodal body force vectors
- Global nodal internal force vectors
- M: Global mass matrix
6.2. Plane Stress Assumption and Constitutive Equation
6.3. Pressure Loading and Van der Waals Equation of State
- n(t): the number of gas moles introduced to inflate the thermoplastic-based composite membrane
- P(t): the internal pressure
- V(t): the volume occupied by the membrane at time t,
- Tg: the absolute gas temperature
- R: the universal gas constant (=8.3145 J mol−1 K−1)
- (i)
- Gas temperature is assumed constant (Tg);
- (ii)
- The biocomposite sheet temperature is assumed constant (Tsheet = Tg);
- (iii)
- At every moment, the pressure between the sheet and the mold is assumed constant (ΔP);
- (iv)
- The contact between the biocomposite sheet and the mold is assumed to be a sticky contact as the polymer cools and stiffens rapidly during the sheet/mold contact.
6.4. Analysis of Reliability of Experimental Tests Characterization on Thermoforming
- -
- The experimental test used for the construction of the constitutive behavior law of polymers plays a key role on the qualities of the results;
- -
- The results obtained by the mechanical blowing test, which induces deformation modes similar to those encountered in thermoforming, seem to be the most appropriate;
- -
- The construction of viscoelastic laws from DMA is more suitable for small deformations for thermoforming applications;
- -
- The choice to use the finite element method with a pressure load, which is derived from a thermodynamic law, is judicious for the integrated analysis in large deformations of the forming of a thin part;
- -
- Experimental temperature can improve the quality of viscoelastic identification for thermoforming applications. The material becomes softer.
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chyan, Y.; Shiu-Wan, H. Modeling and Optimization of a Plastic Thermoforming Process. J. Reinf. Plast. Compos. 2004, 23, 109–121. [Google Scholar]
- Derdouri, A.; Erchiqui, F.; Bendada, A.; Verron, E.; Peseux, B. Viscoelastic behaviour of polymer membrane under inflation. 20000-XIII Int. Congr. Rheol. 2000, 3, 394–396. [Google Scholar]
- Toth, G.; Nagy, D.; Bata, A.; Belina, K. Determination of polymer melts flow-activation energy a afunction of wide range shear rate. IOP Conf. Ser. J. Phys. 2018, 1045, 012040. [Google Scholar] [CrossRef]
- Buckley, C.P.; Bucknell, C.B. Principles of Polymer Engineering, 2nd ed.; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Christensen, R.M. A Nonlinear Theory of Viscoelasticity for Application to Elastomers. J. Appl. Mech. ASME Trans. 1980, 47, 762–768. [Google Scholar] [CrossRef]
- Bernstein, B.; Kearsley, E.A.; Zapas, L.J. A study of stress relaxation with finite strain. Trans. Soc. Rheol. 1963, 7, 391–410. [Google Scholar] [CrossRef]
- Lodge, A.S. Elastic Liquids; An Introductory Vector Treatment Of Finite-strain Polymer Rheology. J. Am. Chem. Soc. 1964, 86, 5056. [Google Scholar]
- Engelmann, S. Advanced Thermoforming: Methods, Machines and Materials, Applications and Automation; Wiley Series on Polymer Engineering and Technology; John & Son Inc.-Wiley: Hoboken, NJ, USA, 2012; ISBN 978-0-470-49920-7. [Google Scholar]
- Janhui, H.; Wujun, C.; Fan, P.; Gao, J.; Fang, G.; Cao, Z.; Peng, F. Uniaxial tensile tests and dynamic mechanical analysis of satin weave reinforced epoxy shape memory polymer composite. Polym. Test. 2017, 64, 235–241. [Google Scholar]
- Jerabek, M.; Major, Z.; Lang, R.W. Uniaxial compression testing of polymeric materials. Polym. Test. 2012, 29, 302–309. [Google Scholar] [CrossRef]
- Daiyan, H.; Andreassen, E.; Grytten, F.; Osnes, H. Shear Testing of Polypropylene Materials Analysed by Digital Image Correlation and Numerical Simulations. Exp. Mech. 2012, 52, 1355–1369. [Google Scholar] [CrossRef]
- Erchiqui, F.; Ozdemir, Z.; Souli, M.; Ezaidi, H.; Dituba-Ngoma, G. Neuronal networks approach for characterization of viscoelastic polymers. Can. J. Chem. Eng. 2011, 89, 1303–1310. [Google Scholar] [CrossRef]
- Souli, M.; Erchiqui, F. Experimental and Numerical Investigation of Instructions for Hyperelastic Membrane Inflation Using Fluid Structure Coupling. Comput. Model. Eng. Sci. 2011, 77, 183–200. [Google Scholar]
- Potter, S.; Graves, J.; Drach, B.; Leahy, T.; Hammel, C.; Feng, Y.; Baker, A.; Sacks, M.S. A Novel Small-Specimen Planar Biaxial Testing System with Full In-Plane Deformation Control. J. Biomech. Eng. 2018, 140, 0510011–05100118. [Google Scholar] [CrossRef] [PubMed]
- Meissner, J.; Raible, T.; Stephenson, S.E. Rotary clamp in uniaxial and biaxial rheometry of polymer melts. J. Rheol. 1981, 25, 1–28. [Google Scholar] [CrossRef]
- Benjeddou, A.; Jankovich Hadhri, T. Determination of the parameters of Ogden’s law using biaxial data and Levenberg-Marquardt-Fletcher algorithm. J. Elastomers Plast. 1993, 25, 224–248. [Google Scholar] [CrossRef]
- Marquardt, D. An Algorithm for the Least-Squares Estimation of Non-linear Parameters. SIAM J. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Baatti, A.; Erchiqui, F.; Godard, F.; Bussières, D.; Bébin, P. A two-step Sol-Gel method to synthesize ladder polymethylsilsesquioxane nanoparticles. Adv. Powder Technol. 2017, 28, 1038–1046. [Google Scholar] [CrossRef]
- Baatti, A.; Erchiqui, F.; Godard, F.; Bussières, D.; Bébin, P. DMA analysis, thermal study and morphology of polymethylsilsesquioxane nanoparticles-reinforced HDPE nanocomposite. J. Therm. Anal. Calorim. 2020, 139, 789–797. [Google Scholar] [CrossRef]
- Ben Aoun, N.; Erchiqui, F.; Mrad, H.; Dituba-Ngoma, G.; Godard, F. Viscoelastic characterization of high-density polyethylene membranes under the combined effect of the temperature and the gravity for thermoforming applications. Polym. Eng. Sci. 2020, 60, 2676. [Google Scholar] [CrossRef]
- Erchiqui, F.; Gakwaya, A.; Rachik, M. Dynamic finite element analysis of nonlinear isotropic hyperelastic and viscoelastic materials for thermoforming applications. Polym. Eng. Sci. 2005, 45, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Courant, R.; Friedrichs, K.; Lewy, H. On the partial difference equations of mathematical physics. IBM J. Res. Dev. 1967, 11, 215–234. [Google Scholar] [CrossRef]
- Redlich, O.; Kwong, J.N.S. V-An equation of state. Chem. Rev. 1949, 44, 233. [Google Scholar] [CrossRef] [PubMed]
- Erchiqui, F. A New hybrid approach using the explicit dynamic finite element method and thermodynamic law for the analysis of the thermoforming and blow molding processes for polymer materials. Polym. Eng. Sci. 2006, 46, 1554. [Google Scholar] [CrossRef]
% PMSQ–HDPE | Elastic Modulus (MPa) | Yield Stress (MPa) | Elongation at Break (%) |
---|---|---|---|
0.0% | 1031 ± 26 | 26.8 ± 0.2 | 39.2 ± 2.3 |
0.5% | 1064 ± 60 | 27.9 ± 0.3 | 47.2 ± 3.1 |
1.0% | 1115 ± 54 | 30.1 ± 0.1 | 41.1 ± 2.3 |
C0 (MPa) | C1 (MPa) | τ1 (s) |
---|---|---|
0.71694 | 0.00001 | 772.00037 |
PMSQ–HDPE at 130 °C | |||||
---|---|---|---|---|---|
C0 (MPa) | C1 (MPa) | C2 (MPa) | C3 (MPa) | C4 (MPa) | C5 (MPa) |
−0.000633 | 6.414907 | 0.294631 | 0.170894 | 0.132937 | 0.062403 |
τ1(s) | τ2(s) | τ3(s) | τ4(s) | τ5(s) | |
0.01 | 0.06 | 0.1 | 1.0 | 10.0 |
Time (s) | Von Mises Stress MPa | Principal Stretch λ3 | ||
---|---|---|---|---|
MB Model | MD Model | MB Model | MD Model | |
0.0143 | 0.04923 | 0.1116 | 0.9676 | 0.9788 |
0.0293 | 0.2298 | 0.4866 | 0.8503 | 0.8736 |
0.0443 | 0.6185 | 0.9467 | 0.6222 | 0.6966 |
0.0593 | 1.158 | 1.658 | 0.408 | 0.5307 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erchiqui, F.; Zaafrane, K.; Baatti, A.; Kaddami, H.; Imad, A. Reliability of Free Inflation and Dynamic Mechanics Tests on the Prediction of the Behavior of the Polymethylsilsesquioxane–High-Density Polyethylene Nanocomposite for Thermoforming Applications. Polymers 2020, 12, 2753. https://doi.org/10.3390/polym12112753
Erchiqui F, Zaafrane K, Baatti A, Kaddami H, Imad A. Reliability of Free Inflation and Dynamic Mechanics Tests on the Prediction of the Behavior of the Polymethylsilsesquioxane–High-Density Polyethylene Nanocomposite for Thermoforming Applications. Polymers. 2020; 12(11):2753. https://doi.org/10.3390/polym12112753
Chicago/Turabian StyleErchiqui, Fouad, Khaled Zaafrane, Abdessamad Baatti, Hamid Kaddami, and Abdellatif Imad. 2020. "Reliability of Free Inflation and Dynamic Mechanics Tests on the Prediction of the Behavior of the Polymethylsilsesquioxane–High-Density Polyethylene Nanocomposite for Thermoforming Applications" Polymers 12, no. 11: 2753. https://doi.org/10.3390/polym12112753
APA StyleErchiqui, F., Zaafrane, K., Baatti, A., Kaddami, H., & Imad, A. (2020). Reliability of Free Inflation and Dynamic Mechanics Tests on the Prediction of the Behavior of the Polymethylsilsesquioxane–High-Density Polyethylene Nanocomposite for Thermoforming Applications. Polymers, 12(11), 2753. https://doi.org/10.3390/polym12112753