Well-Defined Dual Light- and Thermo-Responsive Rod-Coil Block Copolymers Containing an Azobenzene, MEO2MA and OEGMA
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Synthetic Procedures
2.2.1. End Group Modification of PAEAz with Terminal Hydroxyl Group (PAEAzOH)
2.2.2. Synthesis of Macroinitiator with Terminal Bromide Group (PAEAzOBr)
2.2.3. General Polymerization Procedure of PAEAz-b-P(MEO2MA-co-OEGMA) (DRBCP)
3. Results and Discussion
3.1. Syntheses of DRBCPs
3.2. Self-Assembly Behaviors in Aqueous Solution
3.3. Light-Responsive Behaviors
3.4. Thermo-Responsive Behaviors
3.5. Dual Stimuli-Responsive Behaviors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Segalman, R.A. Patterning with block copolymer thin films. Mater. Sci. Eng. R. 2005, 48, 191–226. [Google Scholar] [CrossRef] [Green Version]
- Riess, G. Micellization of block copolymers. Prog. Polym. Sci. 2003, 28, 1107–1170. [Google Scholar] [CrossRef] [Green Version]
- Förster, S.; Plantenberg, T. From Self-Organizing Polymers to Nanohybrid and Biomaterials. Angew. Chem. Int. Ed. 2002, 41, 688–714. [Google Scholar] [CrossRef]
- Discher, D.E.; Eisenberg, A. Polymer Vesicles. Science 2002, 297, 967–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenekhe, S.A.; Chen, X.L. Self-Assembled Aggregates of Rod-Coil Block Copolymers and Their Solubilization and Encapsulation of Fullerenes. Science 1998, 279, 1903–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenekhe, S.A.; Chen, X.L. Self-Assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers. Science 1999, 283, 372–375. [Google Scholar] [CrossRef]
- Yokozawa, T.; Yokoyama, A. Chain-growth polycondensation: The living polymerization process in polycondensation. Prog. Polym. Sci. 2007, 32, 147–172. [Google Scholar] [CrossRef]
- Yokozawa, T.; Suzuki, H. Condensative Chain Polymerization in Solid−Liquid Phase. Synthesis of Polyesters with a Defined Molecular Weight and a Narrow Molecular Weight Distribution by Polycondensation. J. Am. Chem. Soc. 1999, 121, 11573–11574. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101, 2921–2990. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Tsarevsky, N.V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 2009, 1, 276–288. [Google Scholar] [CrossRef]
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wang, F.; Zheng, B.; Huang, F. Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 2012, 41, 6042–6065. [Google Scholar] [CrossRef] [PubMed]
- Schumers, J.-M.; Fustin, C.-A.; Gohy, J.-F. Light-Responsive Block Copolymers. Macromol. Rapid Commun. 2010, 31, 1588–1607. [Google Scholar] [CrossRef] [PubMed]
- Ercole, F.; Davis, T.P.; Evans, R.A. Photo-responsive systems and biomaterials: Photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym. Chem. 2010, 1, 37–54. [Google Scholar] [CrossRef]
- Merino, E.; Ribagorda, M. Control over molecular motion using the cis—trans photoisomerization of the azo group. Beilstein J. Org. Chem. 2012, 8, 1071–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crecca, C.R.; Roitberg, A.E. Theoretical Study of the Isomerization Mechanism of Azobenzene and Disubstituted Azobenzene Derivatives. J. Phys. Chem. A 2006, 110, 8188–8203. [Google Scholar] [CrossRef] [PubMed]
- Natansohn, A.; Rochon, P. Photoinduced Motions in Azo-Containing Polymers. Chem. Rev. 2002, 102, 4139–4176. [Google Scholar] [CrossRef] [PubMed]
- Beharry, A.A.; Woolley, G.A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 2011, 40, 4422–4437. [Google Scholar] [CrossRef]
- Koshima, H.; Ojima, N.; Uchimoto, H. Mechanical Motion of Azobenzene Crystals upon Photoirradiation. J. Am. Chem. Soc. 2009, 131, 6890–6891. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Tong, X.; Wang, X. Photoinduced Deformation of Amphiphilic Azo Polymer Colloidal Spheres. J. Am. Chem. Soc. 2005, 127, 2402–2403. [Google Scholar] [CrossRef]
- Jochum, F.D.; zur Borg, L.; Roth, P.J.; Theato, P. Thermo- and Light-Responsive Polymers Containing Photoswitchable Azobenzene End Groups. Macromolecules 2009, 42, 7854–7862. [Google Scholar] [CrossRef] [Green Version]
- Ward, M.A.; Georgiou, T.K. Thermoresponsive Polymers for Biomedical Applications. Polymers 2011, 3, 1215–1242. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.; Hoogenboom, R.; Schubert, U.S. Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog. Polym. Sci. 2012, 37, 686–714. [Google Scholar] [CrossRef]
- Schild, H.G. Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar] [CrossRef]
- GIL, E.; HUDSON, S. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci. 2004, 29, 1173–1222. [Google Scholar] [CrossRef]
- Lutz, J.-F.; Hoth, A. Preparation of Ideal PEG Analogues with a Tunable Thermosensitivity by Controlled Radical Copolymerization of 2-(2-Methoxyethoxy)ethyl Methacrylate and Oligo(ethylene glycol) Methacrylate. Macromolecules 2006, 39, 893–896. [Google Scholar] [CrossRef]
- Lutz, J.-F. Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 3459–3470. [Google Scholar] [CrossRef]
- Lutz, J.-F.; Akdemir, Ö.; Hoth, A. Point by Point Comparison of Two Thermosensitive Polymers Exhibiting a Similar LCST: Is the Age of Poly(NIPAM) Over? J. Am. Chem. Soc. 2006, 128, 13046–13047. [Google Scholar] [CrossRef]
- Dai, S.; Ravi, P.; Tam, K.C. Thermo- and photo-responsive polymeric systems. Soft Matter 2009, 5, 2513–2533. [Google Scholar] [CrossRef]
- Jochum, F.D.; Theato, P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468–7483. [Google Scholar] [CrossRef]
- Kungwatchakun, D.; Irie, M. Photoresponsive polymers. Photocontrol of the phase separation temperature of aqueous solutions of poly-[N-isopropylacrylamide-co-N-(4-phenylazophenyl)acrylamide]. Makromol. Chem., Rapid Commun. 1988, 9, 243–246. [Google Scholar] [CrossRef]
- Jochum, F.D.; Theato, P. Temperature and light sensitive copolymers containing azobenzene moieties prepared via a polymer analogous reaction. Polymer 2009, 50, 3079–3085. [Google Scholar] [CrossRef]
- Ueki, T.; Nakamura, Y.; Yamaguchi, A.; Niitsuma, K.; Lodge, T.P.; Watanabe, M. UCST Phase Transition of Azobenzene-Containing Random Copolymer in an Ionic Liquid. Macromolecules 2011, 44, 6908–6914. [Google Scholar] [CrossRef]
- Boissiere, O.; Han, D.; Tremblay, L.; Zhao, Y. Flower micelles of poly(N-isopropylacrylamide) with azobenzene moieties regularly inserted into the main chain. Soft Matter 2011, 7, 9410–9415. [Google Scholar] [CrossRef]
- Akiyama, H.; Tamaoki, N. Synthesis and Photoinduced Phase Transitions of Poly(N-isopropylacrylamide) Derivative Functionalized with Terminal Azobenzene Units. Macromolecules 2007, 40, 5129–5132. [Google Scholar] [CrossRef]
- Ueki, T.; Yamaguchi, A.; Ito, N.; Kodama, K.; Sakamoto, J.; Ueno, K.; Kokubo, H.; Watanabe, M. Photoisomerization-Induced Tunable LCST Phase Separation of Azobenzene-Containing Polymers in an Ionic Liquid. Langmuir 2009, 25, 8845–8848. [Google Scholar] [CrossRef]
- Hu, J.; Xie, Y.; Zhang, H.; He, C.; Zhang, Q.; Zou, G. Chiral induction, modulation and locking in porphyrin based supramolecular assemblies with circularly polarized light. Chem. Commun. 2019, 55, 4953–4956. [Google Scholar] [CrossRef]
- Hall, C.C.; Rivera, C.A.; Lodge, T.P. The effect of light penetration depth on the LCST phase behavior of a thermo- and photoresponsive statistical copolymer in an ionic liquid. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 281–287. [Google Scholar] [CrossRef]
- Ravi, P.; Sin, S.L.; Gan, L.H.; Gan, Y.Y.; Tam, K.C.; Xia, X.L.; Hu, X. New water soluble azobenzene-containing diblock copolymers: Synthesis and aggregation behavior. Polymer 2005, 46, 137–146. [Google Scholar] [CrossRef]
- Jochum, F.D.; Theato, P. Thermo- and light responsive micellation of azobenzene containing block copolymers. Chem. Commun. 2010, 46, 6717–6719. [Google Scholar] [CrossRef]
- Tao, X.; Gao, Z.; Satoh, T.; Cui, Y.; Kakuchi, T.; Duan, Q. Synthesis and characterization of well-defined thermo- and light-responsive diblock copolymers by atom transfer radical polymerization and click chemistry. Polym. Chem. 2011, 2, 2068–2073. [Google Scholar] [CrossRef]
- Heo, J.; Kim, Y.J.; Seo, M.; Shin, S.; Kim, S.Y. Photoinduced reversible transmittance modulation of rod–coil type diblock copolymers containing azobenzene in the main chain. Chem. Commun. 2012, 48, 3351–3353. [Google Scholar] [CrossRef] [PubMed]
- Yagai, S.; Yamauchi, M.; Kobayashi, A.; Karatsu, T.; Kitamura, A.; Ohba, T.; Kikkawa, Y. Control over Hierarchy Levels in the Self-Assembly of Stackable Nanotoroids. J. Am. Chem. Soc. 2012, 134, 18205–18208. [Google Scholar] [CrossRef] [PubMed]
- Fundueanu, G.; Constantin, M.; Bortolotti, F.; Cortesi, R.; Ascenzi, P.; Menegatti, E. Poly[(N-isopropylacrylamide-co-acrylamide-co-(hydroxyethylmethacrylate))] thermoresponsive microspheres: An accurate method based on solute exclusion technique to determine the volume phase transition temperature. Eur. Polym. J. 2007, 43, 3500–3509. [Google Scholar] [CrossRef]
- Chilkoti, A.; Dreher, M.R.; Meyer, D.E.; Raucher, D. Targeted drug delivery by thermally responsive polymers. Adv. Drug Deliv. Rev. 2002, 54, 613–630. [Google Scholar] [CrossRef]
Polymer | Mn (NMR) 1 | Mn (GPC) 2 | Mw (GPC) 2 | PDI 2 |
---|---|---|---|---|
PAEAz | 2091 | 3264 | 3691 | 1.13 |
PAEAzOH | 2196 | 3305 | 3723 | 1.13 |
PAEAzOBr | 2345 | 3243 | 3607 | 1.11 |
Polymer | Mn (NMR) 1 | Mn (GPC) 2 | Mw (GPC) 2 | PDI 2 | Td5 (°C) 3 | Tg (°C) 4 |
---|---|---|---|---|---|---|
DRBCP1a | 9200 | 5760 | 6410 | 1.11 | 309 | −34.6 |
DRBCP1b | 22,100 | 12,300 | 13,900 | 1.13 | 299 | −35.5 |
DRBCP1c | 42,100 | 14,600 | 16,600 | 1.13 | 250 | −34.2 |
DRBCP2 | 60,200 | 18,400 | 20,700 | 1.13 | 234 | −35.2 |
Polymer | OEGMA Ratio (%) 1 | LCST (°C) 2 | ||
---|---|---|---|---|
1 mg/mL | 5 mg/mL | 10 mg/mL | ||
DRBCP1b | 9.98 | 37.7 | 37.5 | 36.8 |
DRBCP1c | 9.18 | 37.5 | 37.4 | 36.5 |
DRBCP2 | 10.90 | 38.9 | 38.7 | 37.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.; Heo, J.; Lee, J.; Kim, T.; Kim, S.Y. Well-Defined Dual Light- and Thermo-Responsive Rod-Coil Block Copolymers Containing an Azobenzene, MEO2MA and OEGMA. Polymers 2020, 12, 284. https://doi.org/10.3390/polym12020284
Park C, Heo J, Lee J, Kim T, Kim SY. Well-Defined Dual Light- and Thermo-Responsive Rod-Coil Block Copolymers Containing an Azobenzene, MEO2MA and OEGMA. Polymers. 2020; 12(2):284. https://doi.org/10.3390/polym12020284
Chicago/Turabian StylePark, Changjun, Jaewon Heo, Jinhee Lee, Taehyoung Kim, and Sang Youl Kim. 2020. "Well-Defined Dual Light- and Thermo-Responsive Rod-Coil Block Copolymers Containing an Azobenzene, MEO2MA and OEGMA" Polymers 12, no. 2: 284. https://doi.org/10.3390/polym12020284
APA StylePark, C., Heo, J., Lee, J., Kim, T., & Kim, S. Y. (2020). Well-Defined Dual Light- and Thermo-Responsive Rod-Coil Block Copolymers Containing an Azobenzene, MEO2MA and OEGMA. Polymers, 12(2), 284. https://doi.org/10.3390/polym12020284