Multifunctional Stretchable Conductive Woven Fabric Containing Metal Wire with Durable Structural Stability and Electromagnetic Shielding in the X-Band
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials and Sample Preparation
2.2. EMSE Measurement of Woven Fabrics
2.3. Elastic Recovery Response of Weft-Stretchable Woven Fabric
3. EMI Shielding Mechanism and Data Analysis
4. Results and Discussion
4.1. Elastic Recovery Behavior of Stretchable Fabric Following Cyclic Stretch
4.1.1. Static Elastic Recovery Values of Fabric Following Cyclic Stretch
4.1.2. Dynamic Work Recovery Values of Fabric Following Cyclic Stretch
4.2. EMSE Evaluation of Stretch Fabric in X-band 8.2–12.4 GHz
4.2.1. EMSE of Fabric in Initial State (with Free Load)
4.2.2. EMSE of Fabric at Different Elongations
4.2.3. EMSE of Fabric Following Cyclic Stretch
4.2.4. EMSE of Two-Layer Laminated Fabrics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wan, Y.J.; Zhu, P.L.; Yu, S.H.; Sun, R.; Wong, C.P.; Liao, W.H. Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 2018, 14, 1800534. [Google Scholar] [CrossRef] [PubMed]
- Kostoff, R.N.; Lau, C.G. Combined biological and health effects of electromagnetic fields and other agents in the published literature. Technol. Forecast. Soc. 2013, 80, 1331–1349. [Google Scholar] [CrossRef]
- Phillips, J.L.; Singh, N.P.; Lai, H. Electromagnetic fields and DNA damage. Pathophysiology 2009, 16, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Roosli, M.; Frei, P.; Mohler, E.; Hug, K. Systematic review on the health effects of exposure to radiofrequency electromagnetic fields from mobile phone base stations. Bull. World Health Organ. 2010, 88, 887–896. [Google Scholar] [CrossRef]
- Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Fang, Q.; Zhong, Q.; Chen, Y.; Wang, J. Synthesis and thermosensitive behavior of polyacrylamide copolymers and their applications in smart textiles. Polymers 2015, 7, 909–920. [Google Scholar] [CrossRef]
- Khattab, T.A.; Mowafi, S.; EI-Sayed, H. Development of mechanically durable hydrophobic lanolin/silicone rubber coating on viscose fibers. Cellulose 2019, 26, 9361–9371. [Google Scholar] [CrossRef]
- Wang, B.; Wu, X.; Li, J.; Hao, X.; Lin, J.; Cheng, D.; Lu, Y. Thermosensitive behavior and antibacterial activity of cotton fabric modified with a chitosan-poly (N-isopropylacrylamide) interpenetrating polymer network hydrogel. Polymers 2016, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Li, Y.; Liu, X. Polymer interface molecular engineering for E-textiles. Polymers 2018, 10, 573. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahman, M.S.; Khattab, T.A. Development of one-Step water-repellent and flame-retardant finishes for cotton. ChemistrySelect 2019, 4, 3811–3816. [Google Scholar] [CrossRef]
- Abdelrahman, M.S.; Nassar, S.H.; Mashaly, H.; Mahmoud, S.; Maamoun, D.; EI-Sakhawy, M.; Khattab, T.A.; Kamel, S. Studies of polylactic acid and metal oxide nanoparticles-based composites for multifunctional textile prints. Coatings 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.H.; Huang, Y.T.; Li, T.T.; Lin, C.M.; Lou, C.W. Manufacture technique and performance evaluation of electromagnetic-shielding/far-infrared elastic warp-knitted composite fabrics. J. Text. Inst. 2016, 107, 493–503. [Google Scholar] [CrossRef]
- Jaroszewski, M. Flexible barrier materials for protection against electromagnetic fields and their characterization. Eur. Phys. J. B 2015, 88, 262. [Google Scholar] [CrossRef] [Green Version]
- Bedeloglu, A. Electrical, electromagnetic shielding, and some physical properties of hybrid yarn-based knitted fabrics. J. Text. Inst. 2013, 104, 1247–1257. [Google Scholar] [CrossRef]
- Su, C.I.; Chern, J.T. Effect of stainless steel-containing fabrics on electromagnetic shielding effectiveness. Text. Res. J. 2004, 74, 51–54. [Google Scholar] [CrossRef]
- Ortlek, H.G.; Saracoglu, O.G.; Saritas, O.; Bilgin, S. Electromagnetic shielding characteristics of woven fabrics made of hybrid yarns containing metal wire. Fibers Polym. 2012, 13, 63–67. [Google Scholar] [CrossRef]
- Lou, C.W.; Lin, T.A.; Chen, A.P.; Lin, J.H. Stainless steel/polyester woven fabrics and copper/polyester woven fabrics: Manufacturing techniques and electromagnetic shielding effectiveness. J. Ind. Text. 2016, 46, 214–236. [Google Scholar] [CrossRef]
- Liang, R.R.; Cheng, W.J.; Xiao, H.; Shi, M.; Tang, Z.; Wang, N. A calculating method for the electromagnetic shielding effectiveness of metal fiber blended fabric. Text. Res. J. 2018, 88, 973–986. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, L.; Guo, M.; Xue, W. Evaluation of electromagnetic shielding and wear- ability of metal wire composite fabrics based on grey clustering analysis. J. Text. Inst. 2016, 107, 42–49. [Google Scholar] [CrossRef]
- Yu, Z.C.; He, H.L.; Lu, Y.H.; Lu, X.; Zhang, J.F.; Lou, C.W.; Lin, J.H. Electromagnetic shielding, wicking, and drying characteristics of CSP/AN/SSW hybrid yarns-incorporated woven fabric. J. Ind. Text. 2016, 46, 950–967. [Google Scholar] [CrossRef]
- Ceken, F.; Pamuk, G.; Kayacan, O.; Ozkurt, A.; Ugurlu, S.S. Electromagnetic shielding properties of plain knitted fabrics containing conductive yarns. J. Eng. Fibers Fabr. 2012, 7, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.H.; Hwang, P.W.; Hsieh, C.T.; Pan, Y.J.; Chen, Y.S.; Chuang, Y.C. Electromagnetic shielding and far infrared composite woven fabrics: Manufacturing technique and function evaluation. Text. Res. J. 2017, 87, 2039–2047. [Google Scholar] [CrossRef]
- Erdumlu, N.; Saricam, C. Electromagnetic shielding effectiveness of woven fabrics containing cotton/metal-wrapped hybrid yarns. J. Ind. Text. 2015, 46, 1084–1103. [Google Scholar] [CrossRef]
- Perumalraj, R.; Dasaradan, B.S.; Anbarasu, R.; Arokiaraj, P.; Harish, S.L. Electromagnetic shielding effectiveness of copper core-woven fabrics. J. Text. Inst. 2009, 100, 512–524. [Google Scholar] [CrossRef]
- Duran, D.; Kadoğlu, H. Electromagnetic shielding characterization of conductive woven fabrics produced with silver-containing yarns. Text. Res. J. 2015, 85, 1009–1021. [Google Scholar] [CrossRef]
- Perumalraj, R.; Narayanan, K.S. Nano silver conductive composite material for electromagnetic compatibility. J. Reinf. Plast. Compos. 2014, 33, 1000–1016. [Google Scholar] [CrossRef]
- Hoghoghifard, S.; Mokhtari, H.; Dehghani, S. Improving EMI shielding effectiveness and dielectric properties of polyaniline-coated polyester fabric by effective doping and redoping procedures. J. Ind. Text. 2018, 47, 587–601. [Google Scholar] [CrossRef]
- Gupta, K.K.; Abbas, S.M.; Abhyankar, A.C. Ultra-lightweight hybrid woven fabric containing stainless steel/polyester composite yarn for total EMI shielding in frequency range 8–18 GHz. J. Electromagn. Wave 2015, 29, 1454–1472. [Google Scholar] [CrossRef]
- Pandey, D.N.; Basu, A.; Kumar, P.; Baskey, H.B. Electromagnetic shielding performance of three- dimensional woven fabrics with copper-based hybrid yarn in X-band frequency range. J. Ind. Text. 2018, 49, 484–502. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Wang, F. Structural design and physical characteristics of modified ring-spun yarns intended for e-textiles: A comparative study. Text. Res. J. 2019, 89, 121–132. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Wang, F. Structural evolution and predictive modeling for nonlinear tensile behavior of tri-component elastic-conductive composite yarn during stretch. Text. Res. J. 2019, 89, 487–497. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Wang, F. Experimental evaluation and modified Weibull characterization of the tensile behavior of tri-component elastic-conductive composite yarn. Text. Res. J. 2018, 88, 1138–1149. [Google Scholar] [CrossRef]
- Wang, Y.; Gordon, S.; Yu, W.; Wang, F. Structural architecture of wearable materials based on tri-component elastic-conductive composite yarn: Toward a Joule heating application. Text. Res. J. 2019, 89, 3303–3311. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Gordon, S.; Wang, F. Parametric study on some physical behaviors of tri-component elastic-conductive composite yarns with different elastane drafts. Text. Res. J. 2019, 89, 2163–2176. [Google Scholar] [CrossRef]
- Kizilcay, A.O.; Delihasanlar, E.; Kizilcay Abdulla, F.G.; Yuzer, A.H. Electromagnetic shielding characterization of conductive knitted fabrics. Prog. Electromagn. Res. 2017, 56, 33–41. [Google Scholar]
- Chen, Q.; Ma, P.; Mao, H.; Jiang, G. The effect of knitting parameter and finishing on elastic property of PET/PBT warp knitted fabric. AUTEX Res. J. 2017, 17, 350–360. [Google Scholar] [CrossRef] [Green Version]
- Senthilkumar, M.; Anbumani, N. Dynamics of elastic knitted fabrics for sports wear. J. Ind. Text. 2011, 41, 13–24. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, H.; Shen, J.; Rong, H. The use of a polytrimethylene terephthalate/polyester bi-component filament for the development of seamless garments. Text. Res. J. 2013, 83, 1283–1296. [Google Scholar] [CrossRef]
- Mani, S.; Anbumani, N. Dynamic elastic behavior of cotton and cotton/spandex knitted fabrics. J. Eng. Fibers Fabr. 2014, 9, 93–100. [Google Scholar] [CrossRef]
- Yu, Z.C.; Zhang, J.F.; Lou, C.W.; He, H.L.; Chen, A.P.; Lin, J.H. Wicking behavior and dynamic elastic recovery properties of multifunction elastic warp-knitted fabrics. Text. Res. J. 2015, 85, 1486–1496. [Google Scholar] [CrossRef]
- Saini, P.; Choudhary, V.; Singh, B.P.; Mathur, R.B.; Dhawan, S.K. Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth. Met. 2011, 161, 1522–1526. [Google Scholar] [CrossRef]
- Lin, J.H.; Lin, T.A.; Lin, T.R.; Jhang, J.C.; Lou, C.W. Processing techniques and properties of metal/polyester composite plain material: Electromagnetic shielding effectiveness and far-infrared emissivity. J. Ind. Text. 2018, 49, 365–382. [Google Scholar] [CrossRef]
- Lu, L.; Luo, F.; Qing, Y.; Zhou, W.; Zhu, D. Study on the electromagnetic interference shielding effectiveness of TiN film. J. Mater. Sci. Mater. Electron. 2018, 29, 9052–9057. [Google Scholar] [CrossRef]
- Hong, Y.K.; Lee, C.Y.; Jeong, C.K.; Lee, D.E.; Kim, K.; Joo, J. Method and apparatus to measure electro-magnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. Rev. Sci. Instrum. 2003, 74, 1098–1102. [Google Scholar] [CrossRef] [Green Version]
- Kashi, S.; Gupta, R.K.; Baum, T.; Kao, N. Morphology, electromagnetic properties and electromagnetic interference shielding performance of poly lactide/graphene nano- platelet nanocomposites. Mater. Des. 2016, 95, 119–126. [Google Scholar] [CrossRef]
- Bonaldi, R.R.; Siores, E.; Shah, T. Characterization of electromagnetic shielding fabrics obtained from carbon nanotube composite coatings. Synth. Met. 2014, 187, 1–8. [Google Scholar] [CrossRef]
- Ortlek, H.G.; Alpyildiz, T.; Kilic, G. Determination of electromagnetic shielding performance of hybrid yarn knitted fabrics with anechoic chamber method. Text. Res. J. 2013, 83, 90–99. [Google Scholar] [CrossRef]
- Tezel, S.; Kavusturan, Y.; Vandenbosch, G.A.; Volski, V. Comparison of electromagnetic shielding effectiveness of conductive single jersey fabrics with coaxial transmission line and free space measurement techniques. Text. Res. J. 2014, 84, 461–476. [Google Scholar] [CrossRef]
- Yasufuku, S. Technical progress of EMI shielding materials in Japan. IEEE Electr. Insul. M. 1990, 6, 21–30. [Google Scholar] [CrossRef]
- FTTS-FA-003 Test Method of Specified Requirements of Electromagnetic Shielding Textiles; Committee for Conformity Assessment on Accreditation and Certification of Functional and Technical Textiles: Taipei, Taiwan, 2005.
Stretchable Fabric | 1 Cycle | 10 Cycles | 15 Cycles | |||
---|---|---|---|---|---|---|
ERR | PDR | ERR | PDR | ERR | PDR | |
Specimen 1 | 95% | 1% | 82.5% | 3.5% | 77.5% | 4.5% |
Specimen 2 | 97.5% | 0.5% | 82.5% | 3.5% | 85% | 3% |
Specimen 3 | 90% | 2% | 85% | 4% | 80% | 4% |
Average Values | 94.17% | 1.17% | 83.33% | 3.67% | 80.83% | 3.83% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gordon, S.; Baum, T.; Xu, Z. Multifunctional Stretchable Conductive Woven Fabric Containing Metal Wire with Durable Structural Stability and Electromagnetic Shielding in the X-Band. Polymers 2020, 12, 399. https://doi.org/10.3390/polym12020399
Wang Y, Gordon S, Baum T, Xu Z. Multifunctional Stretchable Conductive Woven Fabric Containing Metal Wire with Durable Structural Stability and Electromagnetic Shielding in the X-Band. Polymers. 2020; 12(2):399. https://doi.org/10.3390/polym12020399
Chicago/Turabian StyleWang, Yong, Stuart Gordon, Thomas Baum, and Zhenzhen Xu. 2020. "Multifunctional Stretchable Conductive Woven Fabric Containing Metal Wire with Durable Structural Stability and Electromagnetic Shielding in the X-Band" Polymers 12, no. 2: 399. https://doi.org/10.3390/polym12020399
APA StyleWang, Y., Gordon, S., Baum, T., & Xu, Z. (2020). Multifunctional Stretchable Conductive Woven Fabric Containing Metal Wire with Durable Structural Stability and Electromagnetic Shielding in the X-Band. Polymers, 12(2), 399. https://doi.org/10.3390/polym12020399