Effect of Silver Nanoparticles on the Microstructure, Non-Isothermal Crystallization Behavior and Antibacterial Activity of Polyoxymethylene
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Ag Nanoparticles
2.3. Preparation of POM/Ag Nanocomposites
2.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.5. Transmission Electron Microscopy (TEM)
2.6. Scanning Electron Microscopy (SEM)
2.7. Thermogravimetric Analysis (TGA)
2.8. X-ray Diffraction (XRD)
2.9. Differential Scanning Calorimetry (DSC)
2.10. Polarized Optical Microscopy
2.11. Antibacterial Tests
3. Results and Discussion
3.1. Characterization of Ag Nanoparticles
3.2. Microstructure and Morphology of POM/Ag Nanocomposites
3.3. Melting and Non-Isothermal Crystallization Behavior of POM/Ag Nanocomposites
3.4. Kinetics of Non-Isothermal Crystallization
3.4.1. Jeziorny Model Analysis
3.4.2. Jeziorny-Modified Avrami Model Analysis
3.4.3. Ozawa Model Analysis
3.4.4. Liu and Mo’s Model Analysis
3.4.5. Ziabicki Model Analysis
3.4.6. Kissinger Model Analysis
3.5. Morphology of POM/Ag Nanocomposites Spherulites
3.6. Antibacterial Activities of POM/Ag Nanocomposites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kwon, G.-J.; Han, S.-Y.; Park, C.-W.; Park, J.-S.; Lee, E.-A.; Kim, N.-H.; Alle, M.; Bandi, R.; Lee, S.-H. Adsorption characteristics of Ag nanoparticles on cellulose nanofibrils with different chemical compositions. Polymers 2020, 12, 164. [Google Scholar] [CrossRef] [Green Version]
- Steiner, A.M.; Mayer, M.; Schletz, D.; Wolf, D.; Formanek, P.; Hubner, R.; Dulle, M.; Forster, S.; Konig, T.A.F.; Fery, A. Silver particles with rhombicuboctahedral shape and effective isotropic interactions with light. Chem. Mater. 2019, 31, 2822–2827. [Google Scholar] [CrossRef]
- Shankar, R.; Groven, L.; Amert, A.; Whites, K.W.; Kellar, J.J. Non-aqueous synthesis of silver nanoparticles using tin acetate as a reducing agent for the conductive ink formulation in printed electronics. J. Mater. Chem. 2011, 21, 10871–10877. [Google Scholar] [CrossRef]
- Akbarzadeh, R.; Ghaedi, M.; Kokhdan, S.N.; Vashaee, D. Remarkably improved electrochemical hydrogen storage by multi-walled carbon nanotubes decorated with nanoporous bimetallic Fe–Ag/TiO2 nanoparticles. Dalton Trans. 2019, 48, 898–907. [Google Scholar] [CrossRef]
- Zare, E.N.; Makvandi, P.; Borzacchiello, A.; Tay, F.R.; Ashtari, B.; Padil, V.V.T. Antimicrobial gum bio-based nanocomposites and their industrial and biomedical applications. Chem. Commun. 2019, 55, 14871–14885. [Google Scholar] [CrossRef]
- Makvandi, P.; Ali, G.W.; Sala, F.D.; Abdel-Fattah, W.I.; Borzacchiello, A. Hyaluronic acid/corn silk extract based injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration. Mater. Sci. Eng. C 2020, 107, 110195. [Google Scholar] [CrossRef]
- Makvandi, P.; Ali, G.W.; Sala, F.D.; Abdel-Fattah, W.I.; Borzacchiello, A. Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohyd. Polym. 2019, 223, 115023. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Liu, C.; Ma, Y.; Wang, X.; Luo, J.; Ye, W. Multi-hydrogen bond assisted SERS detection of adenine based on multifunctional graphene oxide/poly (diallyldimethyl ammonium chloride)/Ag nanocomposites. Talanta 2019, 204, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chang, T.; Wu, Y. In-situ synthesis of acylated sodium alginate-g-(tetrahydrofuran5-b-polyisobutylene) terpolymer/Ag-NPs nanocompos -ites. Carbohyd. Polym. 2019, 219, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Diggikar, R.S.; Deshmukh, S.P.; Thopate, T.S.; Kshirsagar, S.R. Performance of polyaniline nanofibers (PANI NFs) as PANI NFs-silver (Ag) nanocomposites (NCs) for energy storage and antibacterial applications. ACS Omega 2019, 4, 5741–5749. [Google Scholar] [CrossRef]
- Zapata, P.A.; Tamayo, L.; Páez, M.; Cerda, E.; Azócar, I.; Rabagliati, F.M. Nanocomposites based on polyethylene and nanosilver particles produced by metallocenic ‘‘in situ’’ polymerization: Synthesis, characterization, and antimicrobial behavior. Eur. Polym. J. 2011, 47, 1541–1549. [Google Scholar] [CrossRef]
- Shi, Y.; Sun, B.; Zhou, Z.; Wangatia, L.M.; Chen, L.; Zhu, M. Polypropylene nanocomposites based on synthetic organic-soluble Ag nanocrystals with prominent β-nucleating effect: Quiescent crystallization and melting behavior. J. Macromol. Sci. Phys. 2012, 51, 2505–2518. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Wang, X.; Yang, J.; Yang, X.; Lu, L. Gelatin-g-poly(methyl methacrylate)/silver nanoparticle hybrid films and the evaluation of their antibacterial activity. J. Appl. Polym. Sci. 2010, 116, 2617–2625. [Google Scholar] [CrossRef]
- Triebel, C.; Vasylyev, S.; Damm, C.; Stara, H.; Özpinar, C.; Hausmann, S.; Peukert, W.; Münstedt, H. Polyurethane/silver-nanocomposites with enhanced silver ion release using multifunctional invertible polyesters. J. Mater. Chem. 2011, 21, 4377–4383. [Google Scholar] [CrossRef]
- Bazan, P.; Kuciel, S.; Nykiel, M. Characterization of composites based on polyoxymethylene and effect of silicone addition on mechanical and tribological behavior. Polym. Eng. Sci. 2018, 59, 935–940. [Google Scholar] [CrossRef]
- Yang, J.; Yang, W.; Wang, X.; Dong, M.; Liu, H.; Wujcik, E.K.; Shao, Q.; Wu, S.; Ding, T.; Guo, Z. Synergistically toughening polyoxymethylene by methyl methacrylate–butadiene–styrene copolymer and thermoplastic polyurethane. Macromol. Chem. Phys. 2019, 220, 1800567. [Google Scholar] [CrossRef]
- Jiao, Q.; Chen, Q.; Wang, L.; Chen, H.; Li, Y. Investigation on the crystallization behaviors of polyoxymethylene with a small amount of ionic liquid. Nanomaterials 2019, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Hua, L.; Wan, X.; Yang, C.; Xie, C.; He, D. Experiment and simulation of friction coefficient of polyoxymethylene. Ind. Lubr. Tribol. 2018, 70, 273–281. [Google Scholar] [CrossRef]
- Song, Z.; Huang, X.; Lu, X.; Lv, Q.; Xu, N.; Pang, S.; Pan, L.; Li, T. Improvement of microstructures and properties of poly(lactic acid)/poly(ε-caprolactone) blends compatibilized with polyoxymethylene. J. Appl. Polym. Sci. 2018, 135, 46536. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X.; Li, J.; Yan, X.; Ge, S.; Tadakamalla, S.; Guo, Z. Polyoxymethylene/ethylene butylacrylate copolymer/ethylene-methylacrylate- glycidyl methacrylate ternary blends. Polym. Eng. Sci. 2017, 58, 1127–1134. [Google Scholar] [CrossRef] [Green Version]
- Czarnecka-Komorowska, D.; Sterzynski, T. Effect of polyhedral oligomeric silsesquioxane on the melting, structure, and mechanical behavior of polyoxymethylene. Polymers 2018, 10, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Ye, L. Structure and mechanical properties of polyoxymethylene/multi-walled carbon nanotube composites. Compos. Part B 2011, 42, 926–933. [Google Scholar] [CrossRef]
- Shi, Y.; Sun, B.; Zhou, Z.; Wu, Y.; Zhu, M. Size-controlled and large-scale synthesis of organic-soluble Ag nanocrystals in water and their formation mechanism. Prog. Nat. Sci.-Mater. 2011, 21, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Ahn, B.W.; Chi, Y.S.; Kang, T.J. Preparation and characterization of multi-walled carbon nanotube/poly(ethylene terephthalate) nanoweb. J. Appl. Polym. Sci. 2008, 110, 4055. [Google Scholar] [CrossRef]
- Kumar, G.; Neelakantan, N.R.; Subramanian, N. Polyacetal and thermoplastic polyurethane elastomer toughened polyacetal: Crystallinity and fracture mechanics. J. Mater. Sci. 1995, 30, 1480–1486. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, H.; Tan, S.; Gao, J.; Fu, Y.; Liu, Z. Hydrothermal synthesis of Ag nanoparticles on the nanocellulose and their antibacterial study. Inorg. Chem. Commun. 2019, 100, 44–50. [Google Scholar] [CrossRef]
- Chen, M.; Ding, W.; Kong, Y.; Diao, G. Conversion of the surface property of oleic acid stabilized silver nanoparticles from hydrophobic to hydrophilic based on host-guest binding interaction. Langmuir 2008, 24, 3471–3478. [Google Scholar] [CrossRef]
- Jeevanandam, P.; Srikanth, C.K.; Dixit, S. Synthesis of monodisperse silver nanoparticles and their self-assembly through simple thermal decomposition approach. Mater. Chem. Phys. 2010, 122, 402–407. [Google Scholar] [CrossRef]
- Wu, N.; Fu, L.; Su, M.; Aslam, M.; Wong, K.C.; Dravid, V.P. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett. 2004, 4, 383–386. [Google Scholar] [CrossRef]
- Dubois, L.H.; Zegarski, B.R.; Nuzzo, R.G. Spontaneous organization of carboxylic acid monolayer films in ultrahigh vacuum. Kinetic constraints to assembly via gas-phase adsorption. Langmuir 1986, 2, 412–417. [Google Scholar] [CrossRef]
- Minelli, C.; Bartczak, D.; Peters, R.; Rissler, J.; Undas, A.; Sikora, A.; Sjöström, E.; Goenage-Infante, H.; Shard, A.G. Sticky measurement problem: Number concentration of agglomerated nanoparticles. Langmuir 2019, 35, 4927–4935. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Calderon, J.A.; Vallejo-Montesinos, J.; Almendarez-Camarillo, A.; Montiel, R.; Pérez, E. Non-isothermal crystallization analysis of isotactic polypropylene filled with titanium dioxide particles modified by a dicarboxylic acid. Thermochim. Acta 2016, 631, 8–17. [Google Scholar] [CrossRef]
- Durmus, A.; Kasgoz, A.; Ercan, N.; Akın, D.; Sanlı, S. Effect of polyhedral oligomeric silsesquioxane (POSS) reinforced polypropylene (PP) nanocomposite on the microstructure and isothermal crystallization kinetics of polyoxymethylene (POM). Polymer 2012, 53, 5347–5357. [Google Scholar] [CrossRef]
- Supaphol, P.; Dangseeyun, N.; Srimoaon, P. Non-isothermal melt crystallization kinetics for poly(trimethylene terephthalate)/poly (butylene terephthalate) blends. Polym. Test. 2004, 23, 175–185. [Google Scholar] [CrossRef]
- Huang, J.; Hung, H.; Tseng, K.; Kang, C. Nonisothermal crystallization of poly(ethylene-co-glycidyl methacrylate)/clay nanocomposites. J. Appl. Polym. Sci. 2016, 100, 1335–1343. [Google Scholar] [CrossRef]
- Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystalli-zation of poly(ethylene terephthalate) determined by d.s.c. Polymer 1987, 19, 1142–1144. [Google Scholar] [CrossRef]
- Ozawa, T. Kinetics of non-isothermal crystallization. Polymer 1971, 12, 150–158. [Google Scholar] [CrossRef]
- Liu, T.; Mo, Z.; Wang, S.; Zhang, H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym. Eng. Sci. 1997, 37, 568–575. [Google Scholar] [CrossRef]
- Ziabicki, A. Generalized theory of nucleation kinetics. II. athermal nucleation involving spherical clusters. J. Chem. Phys. 1968, 48, 4374–4380. [Google Scholar] [CrossRef]
- Kissinger, H.E. Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand. 1956, 57, 217–221. [Google Scholar] [CrossRef]
- Pan, B.; Yue, Q.; Ren, J.; Wang, H.; Jian, L.; Zhang, J. Non-isothermal crystallization kinetics of PA6/attapulgite compostes prepared by melt compounding. J. Macromol. Sci. B 2006, 45, 1025–1037. [Google Scholar] [CrossRef]
- Min, M.; Shi, Y.; Ma, H.; Huang, H.; Shi, J.; Chen, X.; Liu, Y.; Wang, L. Polymer-nanoparticle composites composed of poly(3-hydroxybutyrate-co-3- hydroxyvalerate) and coated silver nanoparticles. J. Macromol. Sci. B 2015, 54, 411–423. [Google Scholar] [CrossRef]
- Zhu, B.; Li, W.; Song, J.; Wang, J. Structure and properties of polypropylene/polyolefin elastomer/organic montmorillonite nanocomposites. J. Macromol. Sci. B 2019, 58, 73–87. [Google Scholar] [CrossRef]
- Gan, L.; Geng, A.; Wu, Y.; Wang, L.; Fang, X.; Xu, L.; Mei, C. Antibacterial, flexible, and conductive membrane based on MWCNTs/Ag coated electro-spun PLA nanofibrous scaffolds as wearable fabric for body motion sensing. Polymers 2020, 12, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noor, N.; Mutalik, S.; Younas, M.W.; Chan, C.Y.; Thakur, S.; Wang, F.; Yao, M.Z.; Mou, Q.Q.; Leung, P.H. Durable antimicrobial behaviour from silver-graphene coated medical textile composites. Polymers 2019, 11, 2000. [Google Scholar] [CrossRef] [Green Version]
Samples | Tc,o (°C) | Tc,p (°C) | ∆Hm (J/g) a | XC (%) b |
---|---|---|---|---|
POM | 146.12 | 139.64 | 152.94 | 46.91 |
POM/Ag 0.1% | 147.85 | 141.83 | 157.89 | 48.43 |
POM/Ag 0.5% | 148.21 | 142.81 | 164.08 | 50.33 |
POM/Ag 1% | 148.96 | 142.83 | 166.64 | 51.12 |
POM/Ag 2% | 148.33 | 141.71 | 163.71 | 50.21 |
Samples | Φ (°C/min) | TP (°C) | t½ (min) | r | CPR | n | ln(Kt) | ln(KC) |
---|---|---|---|---|---|---|---|---|
POM | 5 | 141.82 | 2.53 | 0.947 | 0.0575 | 3.04 | −8.107 | −1.621 |
10 | 139.64 | 2.13 | 0.956 | 3.23 | −5.129 | −0.513 | ||
20 | 132.77 | 0.84 | 0.931 | 3.03 | −3.252 | −0.163 | ||
30 | 129.57 | 0.58 | 0.953 | 3.01 | −1.043 | −0.035 | ||
40 | 127.88 | 0.33 | 0.981 | 3.19 | 1.912 | 0.049 | ||
POM/Ag 0.1% | 5 | 144.83 | 1.61 | 0.975 | 0.0717 | 3.92 | −5.021 | −1.004 |
10 | 141.83 | 0.81 | 0.966 | 3.94 | −1.530 | −0.153 | ||
20 | 139.03 | 0.50 | 0.972 | 3.95 | 0.027 | 0.001 | ||
30 | 137.90 | 0.39 | 0.971 | 3.96 | 1.847 | 0.061 | ||
40 | 129.98 | 0.33 | 0.970 | 3.91 | 2.323 | 0.058 | ||
POM/Ag 0.5% | 5 | 144.84 | 1.53 | 0.975 | 0.0764 | 3.98 | −4.792 | −0.958 |
10 | 142.81 | 0.78 | 0.975 | 3.94 | −2.671 | −0.267 | ||
20 | 139.71 | 0.44 | 0.988 | 3.95 | −0.125 | −0.006 | ||
30 | 137.74 | 0.35 | 0.976 | 3.93 | 1.005 | 0.034 | ||
40 | 129.89 | 0.29 | 0.967 | 3.91 | 2.158 | 0.054 | ||
POM/Ag 1% | 5 | 144.83 | 1.26 | 0.958 | 0.0805 | 3.99 | −4.763 | −0.953 |
10 | 142.83 | 0.71 | 0.968 | 3.92 | −2.494 | −0.249 | ||
20 | 140.03 | 0.40 | 0.981 | 4.00 | 0.349 | 0.017 | ||
30 | 137.90 | 0.32 | 0.972 | 3.92 | 1.632 | 0.054 | ||
40 | 129.98 | 0.29 | 0.974 | 3.98 | 2.795 | 0.069 | ||
POM/Ag 2% | 5 | 143.83 | 1.39 | 0.977 | 0.0792 | 3.68 | −5.641 | −1.128 |
10 | 141.71 | 0.78 | 0.981 | 3.88 | −3.086 | −0.308 | ||
20 | 138.84 | 0.41 | 0.986 | 3.71 | −0.679 | −0.034 | ||
30 | 137.54 | 0.33 | 0.991 | 3.90 | 1.151 | 0.038 | ||
40 | 127.54 | 0.31 | 0.984 | 3.85 | 2.147 | 0.054 |
Samples | T (°C) | r | m | lnK(T) | Samples | T (°C) | r | m | lnK(T) |
---|---|---|---|---|---|---|---|---|---|
POM | 130 | 0.999 | 1.52 | 4.84 | POM/Ag 0.1% | 132 | 0.999 | 2.01 | 5.97 |
132 | 0.997 | 1.46 | 4.31 | 134 | 0.999 | 2.10 | 5.68 | ||
134 | 0.997 | 1.57 | 4.36 | 136 | 0.999 | 2.20 | 4.80 | ||
136 | 0.999 | 1.64 | 4.21 | 138 | 0.998 | 2.19 | 4.63 | ||
138 | 0.999 | 1.77 | 4.11 | 140 | 0.999 | 2.31 | 4.40 | ||
140 | 0.999 | 1.96 | 3.80 | 142 | 0.999 | 2.37 | 4.10 | ||
142 | 0.999 | 2.20 | 3.75 | 144 | 0.999 | 2.17 | 3.87 | ||
POM/Ag 0.5% | 132 | 0.999 | 1.99 | 5.97 | POM/Ag 1% | 132 | 0.999 | 2.07 | 6.17 |
134 | 0.999 | 2.01 | 5.69 | 134 | 0.997 | 2.04 | 5.85 | ||
136 | 0.999 | 2.18 | 5.36 | 136 | 0.997 | 2.02 | 5.30 | ||
138 | 0.999 | 2.05 | 4.64 | 138 | 0.999 | 2.01 | 4.91 | ||
140 | 0.999 | 2.06 | 4.35 | 140 | 0.999 | 2.03 | 4.36 | ||
142 | 0.998 | 2.04 | 4.10 | 142 | 0.999 | 2.10 | 4.12 | ||
144 | 0.999 | 2.07 | 3.90 | 144 | 0.999 | 2.26 | 3.91 | ||
POM/Ag 2% | 132 | 0.999 | 1.93 | 5.96 | |||||
134 | 0.997 | 1.97 | 5.65 | ||||||
136 | 0.997 | 1.92 | 4.90 | ||||||
138 | 0.999 | 1.97 | 4.48 | ||||||
140 | 0.999 | 1.98 | 4.27 | ||||||
142 | 0.999 | 2.01 | 4.01 | ||||||
144 | 0.999 | 2.05 | 3.89 |
Samples | Xt | α | F(T) |
---|---|---|---|
POM | 20 | 0.814 | 12.67 |
40 | 0.873 | 12.94 | |
60 | 0.936 | 13.07 | |
80 | 1.035 | 13.87 | |
POM/Ag 0.1% | 20 | 0.714 | 5.291 |
40 | 0.761 | 5.457 | |
60 | 0.865 | 5.529 | |
80 | 0.945 | 5.737 | |
POM/Ag 0.5% | 20 | 0.697 | 4.482 |
40 | 0.724 | 4.730 | |
60 | 0.762 | 5.160 | |
80 | 0.823 | 5.818 | |
POM/Ag 1% | 20 | 0.713 | 2.664 |
40 | 0.727 | 2.933 | |
60 | 0.735 | 3.232 | |
80 | 0.781 | 4.301 | |
POM/Ag 2% | 20 | 0.701 | 5.387 |
40 | 0.759 | 5.801 | |
60 | 0.898 | 6.080 | |
80 | 0.987 | 6.129 |
Samples | Φ (°C/min) | TΦ,max (°C) | (dX/dT)Φ,max (s−1) | DΦ (°C) | GZ,Φ | GZ |
---|---|---|---|---|---|---|
POM | 5 | 143.36 | 13.32 | 6.58 | 93.25 | 18.65 |
10 | 139.83 | 10.87 | 7.64 | 88.36 | 8.84 | |
20 | 134.96 | 7.29 | 10.98 | 85.17 | 4.26 | |
30 | 129.71 | 5.76 | 15.27 | 93.58 | 3.12 | |
40 | 128.53 | 4.73 | 16.22 | 81.63 | 2.04 | |
Average | 7.382 | |||||
POM/Ag 0.1% | 5 | 144.93 | 18.64 | 5.01 | 99.36 | 19.87 |
10 | 142.59 | 14.73 | 6.30 | 98.74 | 9.87 | |
20 | 139.73 | 10.39 | 8.89 | 98.28 | 4.91 | |
30 | 137.04 | 8.11 | 11.42 | 98.54 | 3.28 | |
40 | 127.50 | 4.51 | 20.81 | 99.85 | 2.49 | |
Average | 8.084 | |||||
POM/Ag 0.5% | 5 | 145.14 | 22.44 | 4.16 | 99.32 | 19.86 |
10 | 142.12 | 15.91 | 6.01 | 101.74 | 10.17 | |
20 | 139.46 | 10.60 | 8.60 | 96.99 | 4.85 | |
30 | 136.48 | 8.20 | 11.17 | 97.46 | 3.25 | |
40 | 136.17 | 4.41 | 21.94 | 102.95 | 2.57 | |
Average | 8.140 | |||||
POM/Ag 1% | 5 | 145.03 | 21.91 | 4.66 | 108.64 | 21.73 |
10 | 142.29 | 14.53 | 6.91 | 106.82 | 10.68 | |
20 | 139.75 | 9.41 | 10.62 | 106.33 | 5.32 | |
30 | 137.42 | 7.35 | 13.27 | 103.78 | 3.46 | |
40 | 126.66 | 4.43 | 21.98 | 103.60 | 2.59 | |
Average | 8.756 | |||||
POM/Ag 2% | 5 | 145.47 | 19.69 | 4.67 | 97.84 | 19.57 |
10 | 142.53 | 14.98 | 5.99 | 95.47 | 9.55 | |
20 | 139.20 | 9.72 | 10.01 | 103.52 | 5.18 | |
30 | 136.99 | 7.61 | 12.81 | 103.72 | 3.46 | |
40 | 124.75 | 4.39 | 21.29 | 99.44 | 2.49 | |
Average | 8.050 |
Samples | POM | POM/Ag 0.1% | POM/Ag 0.5% | POM/Ag 1% | POM/Ag 2% |
---|---|---|---|---|---|
Activation energy ∆E (kJ/mol) | −167.70 | −171.26 | −171.76 | −172.24 | −172.38 |
r | 0.998 | 0.999 | 0.997 | 0.998 | 0.997 |
Samples | POM | POM/Ag 0.1% | POM/Ag 0.5% | POM/Ag 1% | POM/Ag 2% | |
---|---|---|---|---|---|---|
E. coli | inhibition zones (cm) | 0 | 0.31 | 0.40 | 0.46 | 0.57 |
Inhibition rates (%) | 0 | 87.23 | 92.56 | 95.98 | 98.12 | |
S. aureus | inhibition zones (cm) | 0 | 0.30 | 0.38 | 0.43 | 0.53 |
Inhibition rates (%) | 0 | 86.59 | 91.83 | 94.74 | 97.67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Liu, Y.; Wang, L.; Huang, H.; Zhang, X.; Liu, Y.; Min, M.; Li, Y. Effect of Silver Nanoparticles on the Microstructure, Non-Isothermal Crystallization Behavior and Antibacterial Activity of Polyoxymethylene. Polymers 2020, 12, 424. https://doi.org/10.3390/polym12020424
Zeng Y, Liu Y, Wang L, Huang H, Zhang X, Liu Y, Min M, Li Y. Effect of Silver Nanoparticles on the Microstructure, Non-Isothermal Crystallization Behavior and Antibacterial Activity of Polyoxymethylene. Polymers. 2020; 12(2):424. https://doi.org/10.3390/polym12020424
Chicago/Turabian StyleZeng, Yicheng, Yang Liu, Lumin Wang, Hongliang Huang, Xun Zhang, Yongli Liu, Minghua Min, and Ying Li. 2020. "Effect of Silver Nanoparticles on the Microstructure, Non-Isothermal Crystallization Behavior and Antibacterial Activity of Polyoxymethylene" Polymers 12, no. 2: 424. https://doi.org/10.3390/polym12020424
APA StyleZeng, Y., Liu, Y., Wang, L., Huang, H., Zhang, X., Liu, Y., Min, M., & Li, Y. (2020). Effect of Silver Nanoparticles on the Microstructure, Non-Isothermal Crystallization Behavior and Antibacterial Activity of Polyoxymethylene. Polymers, 12(2), 424. https://doi.org/10.3390/polym12020424