Bio-Based Epoxy Shape-Memory Thermosets from Triglycidyl Phloroglucinol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Triglycidyl Phlroglucinol Derivative
2.3. Preparation of Curing Mixtures
2.4. Thermal Characterization
2.5. Thermomechanical and Mechanical Characterization
2.6. Shape-Memory Properties Characterization
3. Results
3.1. Thermal Characterization
3.2. Thermomechanical Characterization
3.3. Mechanical Characterization
3.4. Shape-Memory Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Behl, M.; Lendlein, A. Shape-memory polymers. Mater. Today 2007, 10, 20–28. [Google Scholar] [CrossRef]
- Habault, D.; Zhang, H.; Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 2013, 42, 7244. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, L.; Zhang, Z.; Kong, D.; Ao, X.; Xiao, X. Electroactive High-Temperature Shape Memory Polymers with High Recovery Stress Induced by Ground Carbon Fibers. Macromol. Chem. Phys. 2019, 220, 1900164. [Google Scholar] [CrossRef]
- Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. USA 2006, 13, 3540–3545. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Qin, H.; Mather, P.T. Review of progress in shape-memory polymers. J. Mater. Chem. 2007, 17, 1543–1558. [Google Scholar] [CrossRef]
- Rousseau, I.A. Challenges of shape memory polymers: A review of the progress toward overcoming SMP’s limitations. Polym. Eng. Sci. 2008. [Google Scholar] [CrossRef]
- Santhosh Kumar, K.S.; Biju, R.; Reghunadhan Nair, C.P. Progress in shape memory epoxy resins. React. Func. Polym. 2013, 73, 421–430. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Kéki, S. Review of progress in shape memory epoxies and their composites. Polymers 2017, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- May, C. Epoxy Resins: Chemistry and Technology; CRC Press: Boca Raton, FL, USA, 1987. [Google Scholar]
- Ng, F.; Couture, G.; Philippe, C.; Boutevin, B.; Caillol, S. Bio-based aromatic epoxy monomers for thermoset materials. Molecules 2017, 22, 149. [Google Scholar] [CrossRef] [Green Version]
- Kadam, A.; Pawar, M.; Yemul, O.; Thamke, V.; Kodam, K. Biodegradable biobased epoxy resin from karanja oil. Polymer 2015, 72, 82–92. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Mohanty, S.; Nayak, S.K. Synthesis and characterization of bio-based epoxy blends from renewable resource based epoxidized soybean oil as reactive diluent. Chin. J. Polym. Sci. 2015, 33, 137–152. [Google Scholar] [CrossRef]
- Francucci, G.; Cardona, F.; Manthey, N.W. Cure kinetics of an acrylated epoxidized hemp oil-based bioresin system. J. Appl. Polym. Sci. 2013, 128, 2030–2037. [Google Scholar] [CrossRef]
- Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J.P. Biobased thermosetting epoxy: Present and future. Chem. Rev. 2014, 114, 1082–1115. [Google Scholar] [CrossRef] [PubMed]
- Voirin, C.; Caillol, S.; Sadavarte, N.V.; Tawade, B.V.; Boutevin, B.; Wadgaonkar, P.P. Functionalization of cardanol: Towards biobased polymers and additives. Polym. Chem. 2014, 5, 3142. [Google Scholar] [CrossRef]
- Salanti, A.; Zoia, L.; Simonutti, R.; Orlandi, M. Epoxidized lignin derivatives as bio-based crosslinkers used in the preparation of epoxy resins. BioResources 2018, 13, 2374–2396. [Google Scholar] [CrossRef]
- Li, T.; Liu, X.; Jiang, Y.; Ma, S.; Zhu, J. Bio-based shape memory epoxy resin synthesized from rosin acid. Iran. Polym. J. 2016, 25, 957–965. [Google Scholar] [CrossRef]
- Benyahya, S.; Aouf, C.; Caillol, S.; Boutevin, B.; Pascault, J.P.; Fulcrand, H. Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins. Ind. Crops Prod. 2014, 53, 296–307. [Google Scholar] [CrossRef]
- Rapi, Z. Synthesis and characterization of biobased epoxy monomers derived from d-glucose. Eur. Polym. J. 2015, 67, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Wang, J.; Kou, Y.; Pang, H.; Zhang, S.; Li, N.; Liu, C.; Weng, Z.; Jian, X. Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock. Nat. Commun. 2019, 10, 2107. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Weng, Z.; Zhang, K.; Wang, J.; Zhang, S.; Liu, C.; Jian, X. Magnolol-based bio-epoxy resin with acceptable glass transition temperature, processability and flame retardancy. Chem. Eng. 2020, 387, 124115. [Google Scholar] [CrossRef]
- Li, C.; Dai, J.; Liu, X.; Jiang, Y.; Ma, S.; Zhu, J. Green Synthesis of a Bio-Based Epoxy Curing Agent from Isosorbide in Aqueous Condition and Shape Memory Properties Investigation of the Cured Resin. Macromol. Chem. Phys. 2016, 217, 1439–1447. [Google Scholar] [CrossRef]
- Tsujimoto, T.; Takeshita, K.; Uyama, H. Bio-based Epoxy Resins from Epoxidized Plant Oils and Their Shape Memory Behaviors. J. Am. Oil Chem. Soc. 2016, 93, 1663–1669. [Google Scholar] [CrossRef]
- Guzmán, D.; Ramis, X.; Fernández-Francos, X.; De la Flor, S.; Serra, À. Preparation of new biobased coatings from a triglycidyl eugenol derivative through thiol-epoxy click reaction. Prog. Org. Coat. 2018, 114, 259–267. [Google Scholar] [CrossRef]
- Guzmán, D.; Serra, À.; Ramis, X.; Fernández-Francos, X.; De la Flor, S. Fully renewable thermosets based on bis-eugenol prepared by thiol-click chemistry. React. Funct. Polym. 2019, 136, 153–166. [Google Scholar] [CrossRef]
- Santiago, D.; Guzmán, D.; Ramis, X.; Ferrando, F.; Serra, À. New Epoxy Thermosets Derived from Clove Oil Prepared by Epoxy-Amine Curing. Polymers 2019, 12, 44. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, D.; Santiago, D.; Serra, À.; Ferrando, F. Novel Bio-Based Epoxy Thermosets Based on Triglycidyl Phloroglucinol Prepared by Thiol-Epoxy Reaction. Polymers 2020, 12, 337. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.T.H.; Bangoura, I.; Kang, J.Y.; Park, N.G.; Ahn, D.H.; Hong, Y.K. Distribution of phlorotannins in the brown alga Ecklonia cava and comparison of pretreatments for extraction. Fish. Aquat. Sci. 2011, 14, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.Y.; Choi, H.; Jun, H.S. The effect of phloroglucinol, a component of ecklonia cava extract, on hepatic glucose production. Mar. Drugs. 2017, 15, 106. [Google Scholar] [CrossRef]
- Negrell, C.; Cornille, A.; de Andrade Nascimento, P.; Robin, J.J.; Caillol, S. New bio-based epoxy materials and foams from microalgal oil. Eur. J. Lipid Sci. Technol. 2017, 119, 1600214. [Google Scholar] [CrossRef]
- Noè, C.; Malburet, S.; Bouvet-Marchand, A.; Graillot, A.; Loubat, C.; Sangermano, M. Cationic photopolymerization of bio-renewable epoxidized monomers. Prog. Org. Coat. 2019, 133, 131–138. [Google Scholar] [CrossRef]
- Ng, F.; Bonnet, L.; David, G.; Caillol, S. Novel biobased and food contact epoxy coatings for glass toughening applications. Prog. Org. Coat. 2017, 109, 1–8. [Google Scholar] [CrossRef]
- ASTM E384-17. Standard Test Method for Microindentation Hardness of Materials; ASTM International: West Conshohocken, PA, USA, 2017.
- Yakacki, C.M.; Willis, S.; Luders, C.; Gall, K. Deformation limits in shape-memory polymers. Adv. Eng. Mater. 2008, 10, 112–119. [Google Scholar] [CrossRef]
- Feldkamp, D.M.; Rousseau, I.A. Effect of the deformation temperature on the shape-memory behavior of epoxy networks. Macromol. Mater. Eng. 2010, 295, 726–734. [Google Scholar] [CrossRef]
- Santiago, D.; Fernández-Francos, X.; Ferrando, F.; De la Flor, S. Shape-memory effect in hyperbranched poly(ethyleneimine)-modified epoxy thermosets. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 924–933. [Google Scholar] [CrossRef]
- Rozenberg, B.A. Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines. Adv. Polym. Sci. 1986. [Google Scholar] [CrossRef]
- Wu, X.L.; Kang, S.F.; Xu, X.J.; Xiao, F.; Ge, X.L. Effect of the crosslinking density and programming temperature on the shape fixity and shape recovery in epoxy-anhydride shape-memory polymers. J. Appl. Polym. Sci. 2014, 131, 1–10. [Google Scholar] [CrossRef]
- Landel, R.F.; Nielsen, L.E. Mechanical Properties of Polymers and Composites; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Xie, T.; Rousseau, I.A. Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 2009, 50, 1852–1856. [Google Scholar] [CrossRef]
- Jo, M.J.; Choi, H.; Jang, H.; Yu, W.-R.; Park, M.; Kim, Y.; Park, J.K.; Youk, J.H. Preparation of epoxy-based shape memory polymers for deployable space structures using diglycidyl ether of ethoxylated bisphenol-A. J. Polym. Res. 2019, 26, 1801. [Google Scholar] [CrossRef]
- Feldkamp, D.M.; Rousseau, I.A. Effect of chemical composition on the deformability of shape-memory epoxies. Macrom. Mater. Eng. 2011, 296, 1128–1141. [Google Scholar] [CrossRef]
- Belmonte, A.; Guzmán, D.; Fernández-Francos, X.; De la Flor, S. Effect of the network structure and programming temperature on the shape-memory response of thiol-epoxy ‘click’ systems. Polymers 2015, 7, 2146–2164. [Google Scholar] [CrossRef]
- Belmonte, A.; Fernández-Francos, X.; De la Flor, S.; Serra, À. Network structure dependence on unconstrained isothermal-recovery processes for shape-memory thiol-epoxy ‘click’ systems. Mech. Time-Depend. Mater. 2017, 21, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Yakacki, C.M.; Shandas, R.; Safranski, S.; Ortega, A.M.; Sassaman, K.; Gall, K. Strong, tailored, biocompatible shape-memory polymer networks. Adv. Funct. Mater. 2008, 18, 2428–2435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, A.M.; Yakacki, C.M.; Dixon, S.A.; Likos, R.; Greenberg, A.R.; Gall, K. Effect of crosslinking and long-term storage on the shape-memory behavior of (meth)acrylate-based shape-memory polymers. Soft Matter. 2012, 8, 7381–7392. [Google Scholar] [CrossRef]
- Santiago, D.; Fabregat-Sanjuan, A.; Ferrando, F.; De la Flor, S. Recovery stress and work output in hyperbranched poly(ethyleneimine)-modified shape-memory epoxy polymers. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1002–1013. [Google Scholar] [CrossRef]
- Belmonte, A.; Russo, C.; Ambrogi, V.; Fernández-Francos, X.; De la Flor, S. Epoxy-based shape-memory actuators obtained via dual-curing of off-stoichiometric ‘thiol-epoxy’ mixtures. Polymers 2017, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Li, L.; Deng, X.Y.; Cheng, C.Y.; Yang, K.K.; Wang, Y.Z. Reinforcement of shape-memory poly(ethylene-co-vinyl acetate) by carbon fibre to access robust recovery capability under resistant condition. Compos. Sci. Technol. 2018, 157, 202–208. [Google Scholar] [CrossRef]
- Anthamatten, M.; Cavicchi, K.; Li, G.; Wang, A. Cold, warm, and hot programming of shape memory polymers. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1319–1339. [Google Scholar]
Sample | DGEBA [wt. %] | 3EPOPh [wt. %] | TPTE [wt. %] | JEF [wt. %] | υc 1 [mol/g] | υe 2 [mol/g] |
---|---|---|---|---|---|---|
DG-JEF | 62.9 | 0 | 0 | 37.1 | 0.0017 | 0.0014 |
3EPOPh-JEF | 0 | 47.7 | 0 | 52.3 | 0.0024 | 0.0039 |
3EPOPh-JEF-0.05TPTE | 0 | 45.3 | 2.4 | 52.3 | 0.0024 | 0.0027 |
3EPOPh-JEF-0.1TPTE | 0 | 43.0 | 4.8 | 52.2 | 0.0024 | 0.0024 |
Sample | Tpeak [°C] | ΔH [J/g] 1 | ΔH [kJ/eq] 2 | Tg [°C] 3 |
---|---|---|---|---|
DG-JEF | 140 | 386 | 112 | 56 |
3EPOPh-JEF | 124 | 488 | 100 | 61 |
3EPOPh-JEF-0.05TPTE | 121 | 504 | 105 | 48 |
3EPOPh-JEF-0.1TPTE | 125 | 429 | 88 | 34 |
Sample | T5% [°C] 1 | Tmax [°C] 2 | Char Residue [%] |
---|---|---|---|
DG-JEF | 354 | 381 | 7.6 |
3EPOPh-JEF | 304 | 338 | 12.0 |
3EPOPh-JEF-0.05TPTE | 303 | 332 | 11.5 |
3EPOPh-JEF-0.1TPTE | 301 | 331 | 11.1 |
Sample | Tg1 [°C] | TgE′2 [°C] | tan δ Peak | FWHM 3 [°C] | E′g4 [MPa] | E′r5 [MPa] | E′g/E′r |
---|---|---|---|---|---|---|---|
DG-JEF | 65 | 57 | 1.5 | 10 | 2770 | 14 | 198 |
3EPOPh-JEF | 73 | 60 | 0.7 | 17 | 2942 | 39 | 75 |
3EPOPh-JEF-0.05TPTE | 63 | 49 | 0.9 | 18 | 2584 | 26 | 99 |
3EPOPh-JEF-0.1TPTE | 56 | 42 | 0.9 | 18 | 2460 | 23 | 107 |
Sample | Troom | TgE′ | ||||||
---|---|---|---|---|---|---|---|---|
σb1 [MPa] | εb2 [%] | Micro-Indendation [HV] | E3 [MPa] | σb1 [MPa] | εb2 [%] | σmax4 [MPa] | εmax5 [%] | |
DG-JEF | 30.0 | 10.7 | 5.4 ± 0.4 | 1318 | 6.0 | 63.3 | 4.5 | 46.8 |
3EPOPh-JEF | 28.0 | 3.2 | 8.7 ± 0.2 | 2222 | 8.2 | 27.1 | 6.1 | 16.0 |
3EPOPh-JEF-0.05TPTE | 27.7 | 10.4 | 5.8 ± 0.9 | 1592 | 11.7 | 36.8 | 8.7 | 25.5 |
3EPOPh-JEF-0.1TPTE | 27.0 | 29.8 | 4.1 ± 0.2 | 1372 | 9.7 | 37.9 | 7.3 | 27.0 |
Sample | Rr [%] | Rf [%] | Vr [%/min] | σrec1 [MPa] | σrec/σmax2 [%] |
---|---|---|---|---|---|
DG-JEF | 94.6 | 98.8 | 19.8 | 4.3 | 94.2 |
3EPOPh-JEF | 88.7 | 95.7 | 15.3 | 5.0 | 83.7 |
3EPOPh-JEF-0.05TPTE | 96.2 | 96.6 | 16.8 | 7.0 | 80.8 |
3EPOPh-JEF-0.1TPTE | 93.1 | 95.6 | 18.4 | 5.5 | 75.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago, D.; Guzmán, D.; Ferrando, F.; Serra, À.; De la Flor, S. Bio-Based Epoxy Shape-Memory Thermosets from Triglycidyl Phloroglucinol. Polymers 2020, 12, 542. https://doi.org/10.3390/polym12030542
Santiago D, Guzmán D, Ferrando F, Serra À, De la Flor S. Bio-Based Epoxy Shape-Memory Thermosets from Triglycidyl Phloroglucinol. Polymers. 2020; 12(3):542. https://doi.org/10.3390/polym12030542
Chicago/Turabian StyleSantiago, David, Dailyn Guzmán, Francesc Ferrando, Àngels Serra, and Silvia De la Flor. 2020. "Bio-Based Epoxy Shape-Memory Thermosets from Triglycidyl Phloroglucinol" Polymers 12, no. 3: 542. https://doi.org/10.3390/polym12030542
APA StyleSantiago, D., Guzmán, D., Ferrando, F., Serra, À., & De la Flor, S. (2020). Bio-Based Epoxy Shape-Memory Thermosets from Triglycidyl Phloroglucinol. Polymers, 12(3), 542. https://doi.org/10.3390/polym12030542