Spinel rGO Wrapped CoV2O4 Nanocomposite as a Novel Anode Material for Sodium-Ion Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of rGO-Wrapped CoV2O4 Material
2.2. Characterizations
2.3. Preparation of the Electrode Using Cellulose-Based Polymer Binder
2.4. Fabrication of the Sodium Ion Cell
2.5. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Xu, X.; Xiong, F.; Meng, J.; Wang, X.; Niu, C.; An, Q.; Mai, L. Vanadium-Based Nanomaterials: A Promising Family for Emerging Metal-Ion Batteries. Adv. Funct. Mater. 2020, 1904398. [Google Scholar] [CrossRef]
- Fang, Y.; Yu, X.-Y.; Lou, X.W. Nanostructured Electrode Materials for Advanced Sodium-Ion Batteries. Matter 2019, 1, 90–114. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Zhu, K.; Gao, Y.; Luo, H.; Lu, L. Recent Progress in the Applications of Vanadium-Based Oxides on Energy Storage: From Low-Dimensional Nanomaterials Synthesis to 3D Micro/Nano-Structures and Free-Standing Electrodes Fabrication. Adv. Energy Mater. 2017, 7, 1700547. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Bresser, D.; Passerini, S. Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-Ion Batteries. Adv. Energy Mater. 2020, 10, 1902485. [Google Scholar] [CrossRef]
- Luo, M.; Yu, H.; Hu, F.; Liu, T.; Cheng, X.; Zheng, R.; Bai, Y.; Shui, M.; Shu, J. Metal selenides for high performance sodium ion batteries. Chem. Eng. J. 2020, 380, 1225572. [Google Scholar] [CrossRef]
- Chen, J.; Chua, D.H.C.; Lee, P.S. The Advances of Metal Sulfides and In Situ Characterization Methods beyond Li Ion Batteries: Sodium, Potassium, and Aluminum Ion Batteries. Small Methods 2020, 4, 1900648. [Google Scholar] [CrossRef]
- Tan, H.; Feng, Y.; Rui, X.; Yu, Y.; Huang, S. Metal Chalcogenides: Paving the Way for High Performance Sodium/Potassium-Ion Batteries. Small Methods 2020, 4, 1900563. [Google Scholar] [CrossRef]
- Yuan, C.; Wu, H.B.; Xie, Y.; Lou, X.W. Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications. Angew. Chem. Int. Ed. 2014, 53, 1488–1504. [Google Scholar] [CrossRef]
- Ni, S.; Liu, J.; Chao, D.; Mai, L. Vanadate-Based Materials for Li-Ion Batteries: The Search for Anodes for Practical Applications. Adv. Energy Mater. 2019, 9, 1803324. [Google Scholar] [CrossRef]
- Muruganantham, R.; Liu, W.R.; Lin, C.H.; Rudysh, M.; Piasecki, M. Design of meso/macro porous 2D Mn-vanadate as potential novel anode materials for sodium ion storage. J. Energy Storage 2019, 26, 100915. [Google Scholar] [CrossRef]
- Qin, Z.; Lv, C.; Pei, J.; Yan, C.; Hu, Y.; Chen, G. A 1D Honeycomb-Like Amorphous Zincic Vanadate for Stable and Fast Sodium-Ion Storage. Small 2020, 16, 1906214. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-X.; Chou, S.-L.; Liu, H.-K.; Dou, S.-X. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 2013, 57, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; He, K.; Zhu, Y.; Han, F.; Xu, Y.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. Expanded graphite as superior anode for sodium ion batteries. Nat. Commun. 2014, 5, 4033. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.A.; Gaddam, R.R.; Varanasi, S.R.; Yang, D.; Bhatia, S.K.; Zhao, X.S. Sodium ion storage in reduced graphene oxide. Electrochim. Acta 2016, 214, 319–325. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Wang, X.; Li, M.; Xu, H. A high capacity NiFe2O4/RGO nanocomposites as superior anode materials for sodium ion batteries. Ceram. Int. 2016, 42, 16666–16670. [Google Scholar] [CrossRef]
- Sekhar, B.C.; Packiyalakshmi, P.; Kalaiselvi, N. Custom designed ZnMn2O4/nitrogen doped graphene composite anode validated for sodium ion battery application. RSC Adv. 2017, 7, 20057–20061. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Li, G.; Li, B.; Fan, J.; Chen, D.; Liu, X.; Li, L. Fast synthesis of Co1.8V1.2O4/rGO as a high-rate anode material for lithium ion batteries. Chem. Commun. 2018, 54, 7689–7692. [Google Scholar] [CrossRef]
- Zhang, D.; Xi, S.; Li, G.; Li, B.; Fan, J.; Liu, X.; Chen, D.; Li, L. Facile synthesis of Mn2.1V0.9O4/rGO: A novel high-rate anode material for lithium ion batteries. J. Power Sources 2019, 426, 197–204. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Ma, C.; Shi, J.; Zhao, Y. Highly monodispersed graphene/SnO2 hybrid nanosheets as bifunctional anode materials of Li ion and Na ion batteries. J. Alloys Compd. 2020, 821, 153506. [Google Scholar] [CrossRef]
- Lu, J.-S.; Maggay, I.V.B.; Liu, W.-R. CoV2O4: A novel anode material for lithium ion batteries with excellent electrochemical performance. Chem. Commun. 2018, 54, 3094–3097. [Google Scholar] [CrossRef]
- Xiao, L.; Zhao, Y.; Yin, J.; Zhang, L. Clewlike ZnV2O4 Hollow Spheres: Nonaqueous Sol-Gel Synthesis, Formation Mechanism, and Lithium Storage Properties. Chem. Eur. J. 2009, 15, 9442–9450. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, A.; Manthiram, A. Microwave-Assisted Solvothermal Synthesis of Spinel AV2O4 (M = Mg, Mn, Fe, and Co). Inorg. Chem. 2014, 53, 8570–8576. [Google Scholar] [CrossRef] [PubMed]
- Muruganantham, R.; Maggay, I.V.B.; Juan, L.M.Z.D.; Nguyen, M.T.; Yonezawa, T.; Lin, C.-H.; Lin, Y.-G.; Liu, W.-R. Electrochemical exploration of the effects of calcination temperature of a mesoporous zinc vanadate anode material on the performance of Na ion batteries. Inorg. Chem. Front. 2019, 6, 2653–2659. [Google Scholar] [CrossRef]
- Palanisamy, K.; Um, J.H.; Jeong, M.; Yoon, W.-S. Porous V2O5/RGO/CNT hierarchical architecture as a cathode material: Emphasis on the contribution of surface lithium storage. Sci. Rep. 2016, 6, 31275. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Varshney, M.; Chae, K.-H.; Won, S.O. Electronic structure and luminescence assets in white-light emitting Ca2V2O7, Sr2V2O7 and Ba2V2O7 pyro-vanadates: X-ray absorption spectroscopy investigations. RSC Adv. 2018, 8, 26423–26431. [Google Scholar] [CrossRef] [Green Version]
- Wen, B.; Wang, Q.; Lin, Y.; Chernova, N.A.; Karki, K.; Chung, Y.; Omenya, F.; Sallis, S.; Piper, L.F.J.; Ong, S.P.; et al. Molybdenum Substituted Vanadyl Phosphate ε-VOPO4 with Enhanced Two-Electron Transfer Reversibility and Kinetics for Lithium-Ion Batteries. Chem. Mater. 2016, 28, 3159–3170. [Google Scholar] [CrossRef]
- Moorhead-Rosenberg, Z.; Harrison, K.L.; Turner, T.; Manthiram, A. A Rapid Microwave-Assisted Solvothermal Approach to Lower-Valent Transition Metal Oxides. Inorg. Chem. 2013, 52, 13087–13093. [Google Scholar] [CrossRef]
- Seok, D.; Jeong, Y.; Han, K.; Yoon, D.Y.; Sohn, H. Recent Progress of Electrochemical Energy Devices: Metal Oxide–Carbon Nanocomposites as Materials for Next-Generation Chemical Storage for Renewable Energy. Sustainability 2019, 11, 3694. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Wang, Q.; Liu, L.; Yao, S.; Wu, W.; Wang, Z.; Lv, P.; Zheng, J.; Yu, K.; Wei, W.; et al. Plasma-Enabled Ternary SnO2@Sn/Nitrogen-Doped Graphene Aerogel Anode for Sodium-Ion Batteries. ChemElectroChem. 2020, 7. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Ding, B.; Li, H.; Liu, X.; Xu, Q. A novel spitball-like Co3(NO3)2(OH)4@Zr-MOF@RGO anode material for sodium ion storage. J. Alloys Compd. 2020, 822, 153624. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.Y.; Kim, Y.; Lee, S.-S.; Park, K. Na Insertion Mechanisms in Vanadium Oxide Nanotubes for Na-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 1477–1485. [Google Scholar] [CrossRef]
- Wu, D.; Li, X.; Xu, B.; Twu, N.; Liu, L.; Ceder, G. NaTiO2: A layered anode material for sodium ion batteries. Energy Environ. Sci. 2015, 8, 195–202. [Google Scholar] [CrossRef]
- Li, T.; Li, X.; Wang, Z.; Guo, H.; Li, Y. A novel NiCo2O4 anode morphology for lithium ion batteries. J. Mater. Chem. A 2015, 3, 11970–11975. [Google Scholar] [CrossRef]
- Lee, B.; Paek, E.; Mitlin, D.; Lee, S.W. Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chem. Rev. 2019, 119, 5416–5460. [Google Scholar] [CrossRef]
- Zhao, Y.; Adair, K.; Sun, X. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ. Sci. 2018, 11, 2673–2695. [Google Scholar] [CrossRef]
- Lu, L.; Wang, J.-Z.; Zhu, X.-B.; Gao, X.-W.; Liu, H.-K. High capacity and high rate capability of nanostructured CuFeO2 anode materials for lithium ion batteries. J. Power Sources 2011, 196, 7025–7029. [Google Scholar] [CrossRef]
- Chang, L.; Wang, K.; Huang, L.; He, Z.; Shao, H.; Wang, J. Hierarchically porous CoO microsphere films with enhanced lithium/sodium storage properties. J. Alloys Compd. 2017, 725, 824–834. [Google Scholar] [CrossRef]
- Zhou, X.; Zhong, Y.; Yang, M.; Zhang, Q.; Wei, J.; Zhou, Z. Co2(OH)2CO3 Nanosheets and CoO Nanonets with Tailored Pore Sizes as Anodes for Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 12022–12029. [Google Scholar] [CrossRef]
- Dixon, D.; Ávila, M.; Ehrenberg, H.; Bhaskar, A. Difference in Electrochemical Mechanism of SnO2 Conversion in Lithium-Ion and Sodium-Ion Batteries: Combined in Operando and Ex Situ XAS Investigations. ACS Omega 2019, 4, 9731–9738. [Google Scholar] [CrossRef] [Green Version]
- Hamani, D.; Ati, M.; Tarascon, J.-M. Patrick Rozier, NaxVO2 as possible electrode for Na ion batteries. Electrochem. Commun. 2011, 13, 938–941. [Google Scholar] [CrossRef]
Parameters | CoV2O4 | CVO/rGO 5 wt. % |
---|---|---|
RS (Ω) | 10.54 | 14.32 |
RSEI (Ω) | 137.20 | 102.80 |
CPE1-T | 1.2746 × 10−5 | 2.0206 × 10−5 |
CPE1-P | 0.86534 | 0.83426 |
CPE2-T | 0.015158 | 0.06819 |
CPE2-P | 0.13263 | 0.24671 |
W1-R | 96.72 | 162.3 |
W1-T | 50.87 | 149.8 |
W1-P | 0.67235 | 0.7404 |
RCT(Ω) | 86.20 | 17.10 |
Slope | 5.81 | 2.55 |
R2 | 0.993 | 0.996 |
Diffusion Coefficient (cm2/s) | 2.77 × 10−11 | 1.44 × 10−10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muruganantham, R.; Lu, J.-S.; Liu, W.-R. Spinel rGO Wrapped CoV2O4 Nanocomposite as a Novel Anode Material for Sodium-Ion Batteries. Polymers 2020, 12, 555. https://doi.org/10.3390/polym12030555
Muruganantham R, Lu J-S, Liu W-R. Spinel rGO Wrapped CoV2O4 Nanocomposite as a Novel Anode Material for Sodium-Ion Batteries. Polymers. 2020; 12(3):555. https://doi.org/10.3390/polym12030555
Chicago/Turabian StyleMuruganantham, Rasu, Jeng-Shin Lu, and Wei-Ren Liu. 2020. "Spinel rGO Wrapped CoV2O4 Nanocomposite as a Novel Anode Material for Sodium-Ion Batteries" Polymers 12, no. 3: 555. https://doi.org/10.3390/polym12030555
APA StyleMuruganantham, R., Lu, J. -S., & Liu, W. -R. (2020). Spinel rGO Wrapped CoV2O4 Nanocomposite as a Novel Anode Material for Sodium-Ion Batteries. Polymers, 12(3), 555. https://doi.org/10.3390/polym12030555