Mussel-Inspired Co-Deposition of Polydopamine/Silica Nanoparticles onto Carbon Fiber for Improved Interfacial Strength and Hydrothermal Aging Resistance of Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fiber Surface Modification
2.3. Preparation of CF/MPSR Composites
2.4. Characterization Techniques
3. Results
3.1. Fiber Surface Composition and Microstructures
3.2. Fiber Surface Energy and Wettability
3.3. Composites Interfacial Strength and Hydrothermal Aging Resistance
3.4. Single Fiber Tensile Strength
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, Y.; Chen, L.; Wang, X.; Wu, G. Modification of Renewable Cardanol onto Carbon Fiber for the Improved Interfacial Properties of Advanced Polymer Composites. Polymers 2020, 12, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, B.; Zhang, J.; Hao, Z.; Huo, L.; Zhang, R.; Shao, L. In-situ modification of carbon fibers with hyperbranched polyglycerol via anionic ring-opening polymerization for use in high-performance composites. Carbon 2017, 123, 548–557. [Google Scholar] [CrossRef]
- Li, Y.; Peng, Q.; He, X.; Hu, P.; Wang, C.; Shang, Y. Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers. J. Mater. Chem. 2012, 22, 18748–18752. [Google Scholar] [CrossRef]
- Duan, G.; Fang, H.; Huang, C.; Jiang, S.; Hou, H. Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid. J. Mater. Sci. 2018, 53, 15096–15106. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, X.; Yan, C. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl. Mater. Inter. 2012, 4, 1543–1552. [Google Scholar] [CrossRef]
- Lu, C.; Wang, J.; Lu, X.; Zheng, T.; Liu, Y.; Wang, X. Wettability and Interfacial Properties of Carbon Fiber and Poly(ether ether ketone) Fiber Hybrid Composite. ACS Appl. Mater. Inter. 2019, 11, 31520–31531. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Y.; Duan, G.; Mei, C.; Greiner, A.; Agarwal, S. Electrospun nanofiber reinforced composites: A review. Polym. Chem. 2018, 9, 2685–2720. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, X.; Wu, G. Chemical modification of carbon fiber with diethylenetriaminepentaacetic acid/halloysite nanotube as a multifunctional interfacial reinforcement for silicone resin composites. Polym. Adv. Technol. 2020, 31, 527–535. [Google Scholar] [CrossRef]
- Bhanuprakash, L.; Parasuram, S.; Varghese, S. Experimental investigation on graphene oxides coated carbon fibre/epoxy hybrid composites: Mechanical and electrical properties. Compos. Sci. Technol. 2019, 179, 134–144. [Google Scholar] [CrossRef]
- Yu, J.; Meng, L.; Huang, Y. The oxidation of carbon fibers through K2S2O8/AgNO3 system that preserves fiber tensile strength. Compos. Part B 2014, 60, 261–267. [Google Scholar] [CrossRef]
- Lee, E.-S.; Lee, C.-H.; Chun, Y.-S.; Han, C.-J.; Lim, D.-S. Effect of hydrogen plasma-mediated surface modification of carbon fibers on the mechanical properties of carbon-fiber-reinforced polyetherimide composites. Compos. Part B 2017, 116, 451–458. [Google Scholar] [CrossRef]
- Peng, Q.; He, X.; Li, Y.; Wang, C.; Wang, R.; Hu, P. Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites. J. Mater. Chem. 2012, 22, 5928–5931. [Google Scholar] [CrossRef]
- Wu, G.; Ma, L.; Jiang, H.; Liu, L.; Huang, Y. Improving the interfacial strength of silicone resin composites by chemically grafting silica nanoparticles on carbon fiber. Compos. Sci. Technol. 2017, 153, 160–167. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, S.; Hao, L.; Yang, F.; Jiao, W.; Li, X. Fabrication of carbon nanotubes/carbon fiber hybrid fiber in industrial scale by sizing process. Appl. Surf. Sci. 2013, 284, 914–920. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, W.; Hao, L.; Jiao, W.; Yang, F.; Wang, R. Preparation of carbon nanotube/carbon fiber hybrid fiber by combining electrophoretic deposition and sizing process for enhancing interfacial strength in carbon fiber composites. Compos. Sci. Technol. 2013, 88, 120–125. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, Y.; Zhang, C.; Liu, L.; Zhang, Y.; Wang, L. Effect of γ-ray irradiation grafting on the carbon fibers and interfacial adhesion of epoxy composites. Compos. Sci. Technol. 2007, 67, 3261–3270. [Google Scholar] [CrossRef]
- Sharma, M.; Gao, S.; Mäder, E.; Sharma, H.; Wei, L.Y.; Bijwe, J. Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 2014, 102, 35–50. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Liu, Y. A novel mussel-inspired strategy toward superhydrophobic surfaces for self-driven crude oil spill cleanup. J. Mater. Chem. A 2015, 3, 12171–12178. [Google Scholar] [CrossRef]
- Shao, L.; Wang, Z.; Zhang, Y.; Jiang, Z.; Liu, Y. A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. J. Membr. Sci. 2014, 461, 10–21. [Google Scholar] [CrossRef]
- Wang, Z.; Lau, C.; Zhang, N.; Bai, Y.; Shao, L. Mussel-inspired tailoring of membrane wettability for harsh water treatment. J. Mater. Chem. A. 2015, 3, 2650–2657. [Google Scholar] [CrossRef]
- Chen, S.; Cao, Y.; Feng, J. Polydopamine as an efficient and robust platform to functionalize carbon fiber for high-performance polymer composites. ACS Appl. Mater. Inter. 2014, 6, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zhang, M.; Jin, L.; Liu, L.; Li, N.; Shang, L. Enhancing interfacial properties of carbon fibers reinforced epoxy composites via Layer-by-Layer self assembly GO/SiO2 multilayers films on carbon fibers surface. Appl. Surf. Sci. 2019, 470, 543–554. [Google Scholar] [CrossRef]
- Mirzapour, A.; Asadollahi, M.; Baghshaei, S.; Akbari, M. Effect of nanosilica on the microstructure, thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite. Compos. Part A 2014, 63, 159–167. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, X.; Wu, G. Facile Strategy of Improving Interfacial Strength of Silicone Resin Composites Through Self-Polymerized Polydopamine Followed via the Sol-Gel Growing of Silica Nanoparticles onto Carbon Fiber. Polymers 2019, 11, 1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Jiang, X.; Cheng, X.; Lau, C.; Shao, L. Mussel-Inspired Hybrid Coatings that Transform Membrane Hydrophobicity into High Hydrophilicity and Underwater Superoleophobicity for Oil-in-Water Emulsion Separation. ACS Appl. Mater. Inter. 2015, 7, 9534–9545. [Google Scholar] [CrossRef]
- Xu, H.; Jiang, S.; Ding, C.; Zhu, Y.; Li, J.; Hou, H. High strength and high breaking load of single electrospun polyimide microfiber from water soluble precursor. Mater. Lett. 2017, 201, 82–84. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, Y.; Feng, P.; Song, G.; Huang, Y.; Liu, H. Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. Compos. Part B 2019, 176, 107078. [Google Scholar] [CrossRef]
Samples | Element Content (%) | |||||
---|---|---|---|---|---|---|
C | N | O | Si | O/C | Si/C | |
Untreated CF | 81.61 | 0.92 | 17.47 | – | 0.21 | – |
CF-PDA | 76.21 | 3.46 | 20.33 | – | 0.27 | – |
CF-PDA/SiO2 | 66.18 | 2.87 | 24.12 | 6.83 | 0.36 | 0.10 |
Samples | Contact Angles (°) | Surface Energy (mN m−1) | TS (GPa) | |||
---|---|---|---|---|---|---|
θwater | θdiiodomethane | γd | γp | γ | ||
Untreated CF | 78.50 ± 2.36 | 58.91 ± 1.77 | 29.20 | 6.66 | 35.86 | 3.354 ± 0.101 |
CF-PDA | 51.17 ± 1.54 | 49.89 ± 1.50 | 34.34 | 19.91 | 54.25 | 3.413 ± 0.102 |
CF-PDA/SiO2 | 41.89 ± 1.26 | 40.26 ± 1.21 | 39.48 | 22.88 | 62.36 | 3.519 ± 0.105 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Ma, L.; Wu, G. Mussel-Inspired Co-Deposition of Polydopamine/Silica Nanoparticles onto Carbon Fiber for Improved Interfacial Strength and Hydrothermal Aging Resistance of Composites. Polymers 2020, 12, 712. https://doi.org/10.3390/polym12030712
Cui X, Ma L, Wu G. Mussel-Inspired Co-Deposition of Polydopamine/Silica Nanoparticles onto Carbon Fiber for Improved Interfacial Strength and Hydrothermal Aging Resistance of Composites. Polymers. 2020; 12(3):712. https://doi.org/10.3390/polym12030712
Chicago/Turabian StyleCui, Xuejun, Lichun Ma, and Guangshun Wu. 2020. "Mussel-Inspired Co-Deposition of Polydopamine/Silica Nanoparticles onto Carbon Fiber for Improved Interfacial Strength and Hydrothermal Aging Resistance of Composites" Polymers 12, no. 3: 712. https://doi.org/10.3390/polym12030712
APA StyleCui, X., Ma, L., & Wu, G. (2020). Mussel-Inspired Co-Deposition of Polydopamine/Silica Nanoparticles onto Carbon Fiber for Improved Interfacial Strength and Hydrothermal Aging Resistance of Composites. Polymers, 12(3), 712. https://doi.org/10.3390/polym12030712