X-ray-Based Spectroscopic Techniques for Characterization of Polymer Nanocomposite Materials at a Molecular Level
Abstract
:1. Introduction
2. X-ray Photoelectron Spectroscopy
2.1. Principle of XPS
2.2. Identification of Elements and Chemical Bonds
2.3. Quantitative Analysis
2.3.1. Elemental or Atomic Percentage
2.3.2. Density (or Concentration) Analysis of Specific Elements
- Electrons released from silicon
- Electrons emitted from SiO2
- Electrons released from an element in an organic layer.
2.4. Angle-Resolved XPS
2.5. Depth Profiling by Etching
3. Energy-Dispersive X-ray Spectroscopy
4. X-ray Absorption Spectroscopy
4.1. Identification of Chemical Environments and Compositions
4.2. Physical States of Interfaces of Two Components in Nanocomposites
5. New Opportunity with Emerging X-ray Based Techniques Enabling Near Ambient Pressure Measurements
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giannelis, E.P.; Krishnamoorti, R.; Manias, E. Polymer-silicate nanocomposites: Model systems for confined polymers and polymer brushes. In Polymers in Confined Environments; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Kojma, Y.; Usuki, A.; Kawasumi, M.; Fukushima, Y.; Okada, A.; Kurayuchi, T.; Kamigaito, O. Mechanical-properties of nylon 6-clay hybrid. J. Mater. Res. 1993, 8, 1185–1189. [Google Scholar] [CrossRef]
- Miziolek, A.W.; Karna, S.P.; Mauro, J.M.; Vaia, R.A. Defense Applications of Nanomaterials; American Chemical Society: Washington, DC, USA, 2005. [Google Scholar]
- Krishnamoorti, R.; Vaia, R.A. Polymer nanocomposites. J. Polym. Sci. Part B Pol. Phys. 2007, 45, 3252–3256. [Google Scholar] [CrossRef]
- Winey, K.I.; Vaia, R.A. Polymer nanocomposites. MRS Bull. 2007, 32, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Michael, A.; Philippe, D. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 2000, 28, 1–63. [Google Scholar]
- Payne, A.R. Effect of dispersion on the dynamic properties of filler-loaded rubbers. J. Appl. Polym. Sci. 1965, 9, 2273–2284. [Google Scholar] [CrossRef]
- Edwards, D.C. Polymer-filler interactions in rubber reinforcement. J. Mater. Sci. 1990, 25, 4175–4185. [Google Scholar] [CrossRef]
- Lee, A.; Lichtenhan, J.D. Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 1998, 31, 4970–4974. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, D.W.; Justice, R.S. How nano are nanocomposites? Macromolecules 2007, 40, 8501–8517. [Google Scholar] [CrossRef]
- Sternstein, S.S.; Zhu, A.J. Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 2002, 35, 7262–7273. [Google Scholar] [CrossRef]
- Tsagaropoulos, G.; Eisenberg, A. Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. Similarities and differences with random ionomers. Macromolecules 1995, 28, 6067–6077. [Google Scholar] [CrossRef]
- Zheng, L.; Farris, R.J.; Coughlin, E.B. Novel polyolefin nanocomposites: Synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 2001, 34, 8034–8039. [Google Scholar] [CrossRef]
- Akcora, P.; Liu, H.; Kumar, S.K.; Moll, J.; Li, Y.; Benicewicz, B.C.; Schadler, L.S.; Acehan, D.; Panagiotopoulos, A.Z.; Pryamitsyn, V. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat. Mater. 2009, 8, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Scogna, R.C.; Zhou, W.; Brand, S.; Fischer, J.E.; Winey, K.I. Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity. Macromolecules 2004, 37, 9048–9055. [Google Scholar] [CrossRef]
- Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/polymer nanocomposites. Macromolecules 2010, 43, 6515–6530. [Google Scholar] [CrossRef]
- Liu, T.; Phang, I.Y.; Shen, L.; Chow, S.Y.; Zhang, W.D. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 2004, 37, 7214–7222. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Winey, K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006, 39, 5194–5205. [Google Scholar] [CrossRef]
- Kouser, R.; Vashist, A.; Zafaryab, M.; Rizvi, M.A.; Ahmad, S. pH-responsive biocompatible nanocomposite hydrogels for therapeutic drug delivery. ACS Appl. Bio Mater. 2018, 1, 1810–1822. [Google Scholar] [CrossRef]
- Kouser, R.; Vashist, A.; Zafaryab, M.; Rizvi, M.A.; Ahmad, S. Na-montmorillonite-dispersed sustainable polymer nanocomposite hydrogel films for anticancer drug delivery. ACS Omega 2018, 3, 15809–15820. [Google Scholar] [CrossRef]
- Kumar, M.N.V.R.; Kumar, N.; Domb, A.J.; Arora, M. Filled Elastomers Drug Delivery Systems; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Yang, C.; Guo, W.; Cui, L.; An, N.; Zhang, T.; Lin, H.; Qu, F. pH-responsive magnetic core–shell nanocomposites for drug delivery. Langmuir 2014, 30, 9819–9827. [Google Scholar] [CrossRef]
- Wang, J.Y.; Hsu, F.C.; Huang, J.Y.; Wang, L.; Chen, Y.F. Bifunctional polymer nanocomposites as hole-transport layers for efficient light harvesting: Application to perovskite solar cells. ACS Appl. Mater. Interfaces 2015, 7, 27676–27684. [Google Scholar] [CrossRef]
- Ahn, C.; Kim, S.M.; Jung, J.W.; Park, J.; Kim, T.; Lee, S.E.; Jang, D.; Hong, J.W.; Han, S.M.; Jeon, S. Multifunctional polymer nanocomposites reinforced by 3D continuous ceramic nanofillers. ACS Nano 2018, 12, 9126–9133. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, X.; Li, T.; Li, L.; Guo, X.; Jiang, P. Polymer-based gate dielectrics for organic field-effect transistors. Chem. Mater. 2019, 31, 2212–2240. [Google Scholar] [CrossRef]
- Pradhan, B.; Setyowati, K.; Liu, H.; Waldeck, D.H.; Chen, J. Carbon nanotube-polymer nanocomposite infrared sensor. Nano Lett. 2008, 8, 1142–1146. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorti, R. Strategies for dispersing nanoparticles in polymers. MRS Bull. 2007, 32, 341–347. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, D.; He, L.; Zhang, L. Entropic interactions in semiflexible polymer nanocomposite melts. J. Phys. Chem. B 2016, 120, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Corbierre, M.K.; Cameron, N.S.; Sutton, M.; Laaziri, K.; Lennox, R.B. Gold nanoparticle/polymer nanocomposites: Dispersion of nanoparticles as a function of capping agent molecular weight and grafting density. Langmuir 2005, 21, 6063–6072. [Google Scholar] [CrossRef]
- Hooper, J.B.; Schweizer, K.S. Theory of phase separation in polymer nanocomposites. Macromolecules 2006, 39, 5133–5142. [Google Scholar] [CrossRef]
- Allegra, G.; Raos, G.; Vacatello, M. Theories and simulations of polymer-based nanocomposites: From chain statistics to reinforcement. Prog. Polym. Sci. 2008, 33, 683–731. [Google Scholar] [CrossRef]
- Mackay, M.E.; Tuteja, A.; Duxbury, P.M.; Hawker, C.J.; Van Horn, B.; Guan, Z.; Chen, G.; Krishnan, R. General strategies for nanoparticle dispersion. Science 2006, 311, 1740–1743. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Yang, G.; Zheng, X.; Zhou, S. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl. Mater. Interfaces 2015, 7, 4118–4126. [Google Scholar] [CrossRef]
- Song, S.; Zhai, Y.; Zhang, Y. Bioinspired graphene oxide/polymer nanocomposite paper with high strength, toughness, and dielectric constant. ACS Appl. Mater. Interfaces 2016, 8, 31264–31272. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhao, Z.; Yang, M.; Xia, H.; Yu, T.; Shen, X. Developing polymer cathode material for the chloride ion battery. ACS Appl. Mater. Interfaces 2017, 9, 2535–2540. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Shi, Y.; Yuan, B.; Qiu, S.; Xing, W.; Hu, W.; Song, L.; Lo, S.; Hu, Y. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J. Mater. Chem. A 2015, 3, 8034–8044. [Google Scholar] [CrossRef]
- Gilbert, J.B.; Luo, M.; Shelton, C.K.; Rubner, M.F.; Cohen, R.E.; Epps III, T.H. Determination of lithium-ion distributions in nanostructured block polymer electrolyte thin films by X-ray photoelectron spectroscopy depth profiling. ACS Nano 2015, 9, 512–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.; Sundaram, H.S.; Finlay, J.A.; Dimitriou, M.D.; Callow, M.E.; Callow, J.A.; Kramer, E.J.; Ober, C.K. Reconstruction of surfaces from mixed hydrocarbon and PEG components in water: Responsive surfaces aid fouling release. Biomacromolecules 2012, 13, 1864–1874. [Google Scholar] [CrossRef]
- Schmitt, S.K.; Trebatoski, D.J.; Krutty, J.D.; Xie, A.W.; Rollins, B.; Murphy, W.L.; Gopalan, P. Peptide conjugation to a polymer coating via native chemical ligation of azlactones for cell culture. Biomacromolecules 2016, 17, 1040–1047. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.J.; Zhu, L.P.; Zhao, Y.F.; Zhu, B.K.; Xu, Y.Y. Anti-fouling and anti-bacterial polyethersulfone membranes quaternized from the additive of poly(2-dimethylamino ethyl methacrylate) grafted SiO2 nanoparticles. J. Mater. Chem. A 2014, 2, 15566–15574. [Google Scholar] [CrossRef]
- Barbey, R.; Laporte, V.; Alnabulsi, S.; Klok, H.A. Postpolymerization modification of poly(glycidyl methacrylate) brushes: An XPS depth-profiling study. Macromolecules 2013, 46, 6151–6158. [Google Scholar] [CrossRef]
- Varol, H.S.; Sánchez, M.A.; Lu, H.; Baio, J.E.; Malm, C.; Encinas, N.; Mermet-Guyennet, M.R.B.; Martzel, N.; Bonn, D.; Bonn, M.; et al. Multiscale effects of interfacial polymer confinement in silica nanocomposites. Macromolecules 2015, 48, 7929–7937. [Google Scholar] [CrossRef]
- Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 1905, 322, 132–148. [Google Scholar] [CrossRef]
- Hüfner, S. Photoelectron spectroscopy: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Powell, C.J. The quest for universal curves to describe the surface sensitivity of electron spectroscopies. J. Electron Spectrosc. 1988, 47, 197–214. [Google Scholar] [CrossRef]
- Hagström, S.; Nordling, C.; Siegbahn, K. Electron spectroscopic determination of the chemical valence state. Z. Phys. 1964, 178, 439–444. [Google Scholar] [CrossRef]
- Baschenko, O.A.; Nefedov, V.I. Relative intensities in X-ray photoelectron spectra. Pt. 4. J. Electron Spectrosc. 1979, 17, 405–420. [Google Scholar] [CrossRef]
- Seah, M.P.; Dench, W. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1979, 1, 2–11. [Google Scholar] [CrossRef]
- Lee, J.; Sohn, S.; Yun, H.J.; Shin, H.J. Degradation studies on high-voltage-driven organic light-emitting device using in situ on-operation method with scanning photoelectron microscopy. Appl. Phys. Lett. 2008, 93, 133310. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.Y.; Bae, J.H.; Hasegawa, Y.; An, S.; Kim, I.S.; Lee, H.; Kim, M. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr. Polym. 2020, 234, 115881. [Google Scholar] [CrossRef]
- Kim, G.; An, S.; Hyeong, S.K.; Lee, S.K.; Kim, M.; Shin, N. Perovskite pattern formation by chemical vapor deposition using photolithographically defined templates. Chem. Mater. 2019, 31, 8212–8221. [Google Scholar] [CrossRef]
- Sweat, D.P.; Kim, M.; Yu, X.; Gopalan, P. A single-component inimer containing cross-linkable ultrathin polymer coating for dense polymer brush growth. Langmuir 2013, 29, 3805–3812. [Google Scholar] [CrossRef]
- Sweat, D.P.; Kim, M.; Yu, X.; Schmitt, S.K.; Han, E.; Choi, J.W.; Gopalan, P. A dual functional layer for block copolymer self-assembly and the growth of nanopatterned polymer brushes. Langmuir 2013, 29, 12858–12865. [Google Scholar] [CrossRef]
- Laibinis, P.E.; Bain, C.D.; Whitesides, G.M. Attenuation of photoelectrons in monolayers of N-alkanethiols adsorbed on copper, silver, and gold. J. Phys. Chem 1991, 95, 7017–7021. [Google Scholar] [CrossRef]
- Martin-Concepción, A.I.; Yubero, F.; Espinos, J.P.; Garcia-Lopez, J.; Tougaard, S. Determination of amount of substance for nanometre-thin deposits: Consistency between XPS, RBS and XRF quantification. Surf. Interface Anal. 2003, 35, 984–990. [Google Scholar] [CrossRef] [Green Version]
- Powell, C.J.; Jablonski, A. Evaluation of electron inelastic mean free paths for selected elements and compounds. Surf. Interface Anal. 2000, 29, 108–114. [Google Scholar] [CrossRef]
- Xuan, Y.; Peng, J.; Cui, L.; Wang, H.; Li, B.; Han, Y. Morphology development of ultrathin symmetric diblock copolymer film via solvent vapor treatment. Macromolecules 2004, 37, 7301–7307. [Google Scholar] [CrossRef]
- Xu, T.; Stevens, J.; Villa, J.A.; Goldbach, J.T.; Guarini, K.W.; Black, C.T.; Hawker, C.J.; Russell, T.P. Block copolymer surface reconstuction: A reversible route to nanoporous films. Adv. Funct. Mater. 2003, 13, 698–702. [Google Scholar] [CrossRef]
- Taketa, T.B.; dos Santos, D.M.; Fiamingo, A.; Vaz, J.M.; Beppu, M.M.; Campana-Filho, S.P.; Cohen, R.E.; Rubner, M.F. Investigation of the internal chemical composition of chitosan-based LbL films by depth-profiling X-ray photoelectron spectroscopy (XPS) analysis. Langmuir 2018, 34, 1429–1440. [Google Scholar] [CrossRef]
- Enache, D.I.; Edwards, J.K.; Landon, P.; Solsona-Espriu, B.; Carley, A.F.; Herzing, A.A.; Watanabe, M.; Kiely, C.J.; Knight, D.W.; Hutchings, G.J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 2006, 311, 362–365. [Google Scholar] [CrossRef]
- Fitzgerald, R.; Keil, K.; Heinrich, K.F.J. Solid-state energy-dispersion spectrometer for electron-microprobe X-ray analysis. Science 1968, 159, 528–530. [Google Scholar] [CrossRef]
- Herzing, A.A.; Watanabe, M.; Edwards, J.K.; Conte, M.; Tang, Z.R.; Hutchings, G.J.; Kiely, C.J. Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discuss. 2008, 138, 337–351. [Google Scholar] [CrossRef]
- Newbury, D.E.; Ritchie, N.W.M. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative? Scanning 2013, 35, 141–168. [Google Scholar] [CrossRef]
- Griffin, B.J. A comparison of conventional Everhart-Thornley style and in-lens secondary electron detectors—A further variable in scanning electron microscopy. Scanning 2011, 33, 162–173. [Google Scholar] [CrossRef]
- D’Alfonso, A.J.; Freitag, B.; Klenov, D.; Allen, L.J. Atomic-resolution chemical mapping using energy-dispersive X-ray spectroscopy. Phys. Rev. B 2010, 81, 100101. [Google Scholar] [CrossRef]
- Brodowski, S.; Amelung, W.; Haumaier, L.; Abetz, C.; Zech, W. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 2005, 128, 116–129. [Google Scholar] [CrossRef]
- Rose, N. Characterization of carbonaceous particles from lake sediments. Hydrobiologia 1994, 274, 127–132. [Google Scholar] [CrossRef]
- Newbury, D.E.; Ritchie, N.W.M. Elemental mapping of microstructures by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS): Extraordinary advances with the silicon drift detector (SDD). J. Anal. At. Spectrom. 2013, 28, 973–988. [Google Scholar] [CrossRef]
- Newbury, D.E. Electron-excited energy dispersive X-ray spectrometry at high speed and at high resolution: Silicon drift detectors and microcalorimeters. Microsc. Microanal. 2006, 12, 527–537. [Google Scholar] [CrossRef]
- Wunderlich, W.; Foitzik, A.H.; Heuer, A.H. On the quantitative EDS analysis of low carbon concentrations in analytical TEM. Ultramicroscopy 1993, 49, 220–224. [Google Scholar] [CrossRef]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-ray Microanalysis; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Piburn, G.; Barron, A.R. Physical Methods in Chemistry and Nano Science; Rice University: Houston, TX, USA, 2013. [Google Scholar]
- Chang, H.H.; Cheng, C.L.; Huang, P.J.; Lin, S.Y. Application of scanning electron microscopy and X-ray microanalysis: FE-SEM, ESEM-EDS, and EDS mapping for studying the characteristics of topographical microstructure and elemental mapping of human cardiac calcified deposition. Anal. Bioanal. Chem. 2014, 406, 359–366. [Google Scholar] [CrossRef]
- Wang, G.; Huang, X.; Jiang, P. Bio-inspired fluoro-polydopamine meets barium titanate nanowires: A perfect combination to enhance energy storage capability of polymer nanocomposites. ACS Appl. Mater. Interfaces 2017, 9, 7547–7555. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, Y.; Meng, W.; Zhi, C. Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers. Nanoscale Res. Lett. 2014, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Higginbotham, A.L.; Stephenson, J.J.; Smith, R.J.; Killips, D.S.; Kempel, L.C.; Tour, J.M. Tunable permittivity of polymer composites through incremental blending of raw and functionalized single-wall carbon nanotubes. J. Phys. Chem. C 2007, 111, 17751–17754. [Google Scholar] [CrossRef]
- Kohlmeyer, R.R.; Javadi, A.; Pradhan, B.; Pilla, S.; Setyowati, K.; Chen, J.; Gong, S. Electrical and dielectric properties of hydroxylated carbon nanotube− elastomer composites. J. Phys. Chem. C 2009, 113, 17626–17629. [Google Scholar] [CrossRef]
- Dang, Z.M.; Zheng, M.S.; Zha, J.W. 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications. Small 2016, 12, 1688–1701. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Schimmoeller, B.; Pratsinis, S.E.; Salz, U.; Bock, T. Radiopaque dental adhesives: Dispersion of flame-made Ta2O5/SiO2 nanoparticles in methacrylic matrices. J. Dent. 2008, 36, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, G.D. Flame synthesis of fine particles. Chem. Eng. News 1984, 62, 22–29. [Google Scholar] [CrossRef]
- Cholin, J. Optical fire detection. Chem. Eng. Prog. 1989, 85, 62–68. [Google Scholar]
- Matijević, E.; Scheiner, P. Ferric hydrous oxide sols: III. Preparation of uniform particles by hydrolysis of Fe (III)-chloride,-nitrate, and-perchlorate solutions. J. Colloid Interface Sci. 1978, 63, 509–524. [Google Scholar] [CrossRef]
- Strobel, R.; Pratsinis, S.E. Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem. 2007, 17, 4743–4756. [Google Scholar] [CrossRef]
- Camenzind, A.; Caseri, W.R.; Pratsinis, S.E. Flame-made nanoparticles for nanocomposites. Nano Today 2010, 5, 48–65. [Google Scholar] [CrossRef]
- Christofides, P.D.; Li, M.; Mädler, L. Control of particulate processes: Recent results and future challenges. Powder Technol. 2007, 175, 1–7. [Google Scholar] [CrossRef]
- Biercuk, M.J.; Llaguno, M.C.; Radosavljevic, M.; Hyun, J.K.; Johnson, A.T.; Fischer, J.E. Carbon nanotube composites for thermal management. Appl. Phys. Lett. 2002, 80, 2767–2769. [Google Scholar] [CrossRef]
- Choi, J.H.; Song, H.J.; Jung, J.; Yu, J.W.; You, N.H.; Goh, M. Effect of crosslink density on thermal conductivity of epoxy/carbon nanotube nanocomposites. J. Appl. Polym. Sci. 2017, 134, 44253. [Google Scholar] [CrossRef]
- Du, F.; Guthy, C.; Kashiwagi, T.; Fischer, J.E.; Winey, K.I. An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity. J. Polym. Sci. Part B Pol. Phys. 2006, 44, 1513–1519. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Ye, L. Preparation, structure, and property of polyoxymethylene/carbon nanotubes thermal conducive composites. J. Polym. Sci. Part B Pol. Phys. 2010, 48, 905–912. [Google Scholar] [CrossRef]
- Pu, Z.; Zheng, X.; Tian, Y.; Hu, L.; Zhong, J. Flexible ultrahigh-temperature polymer-based dielectrics with high permittivity for film capacitor applications. Polymers 2017, 9, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Liu, F.; Jiang, L.; Zhu, J.Y.; Haagenson, D.; Wiesenborn, D.P. Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces 2013, 5, 2999–3009. [Google Scholar] [CrossRef]
- Sarma, S.J.; Bhattacharya, I.; Brar, S.K.; Tyagi, R.D.; Surampalli, R.Y. Carbon nanotube—Bioaccumulation and recent advances in environmental monitoring. Crit. Rev. Environ. Sci. Technol. 2015, 45, 905–938. [Google Scholar] [CrossRef]
- Akhshik, M.; Panthapulakkal, S.; Tjong, J.; Sain, M. Life cycle assessment and cost analysis of hybrid fiber-reinforced engine beauty cover in comparison with glass fiber-reinforced counterpart. Environ. Impact Assess. Rev. 2017, 65, 111–117. [Google Scholar] [CrossRef]
- Carpenter, A.W.; de Lannoy, C.F.; Wiesner, M.R. Cellulose nanomaterials in water treatment technologies. Environ. Sci. Technol. 2015, 49, 5277–5287. [Google Scholar] [CrossRef]
- Das, S. Life cycle assessment of carbon fiber-reinforced polymer composites. Int. J. Life Cycle Assess. 2011, 16, 268–282. [Google Scholar] [CrossRef]
- Lu, J.; Askeland, P.; Drzal, L.T. Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 2008, 49, 1285–1296. [Google Scholar] [CrossRef]
- Frank, B.P.; Durkin, D.P.; Caudill, E.R.; Zhu, L.; White, D.H.; Curry, M.L.; Pedersen, J.A.; Fairbrother, D.H. Impact of silanization on the structure, dispersion properties, and biodegradability of nanocellulose as a nanocomposite filler. ACS Appl. Nano Mater. 2018, 1, 7025–7038. [Google Scholar] [CrossRef]
- Pinheiro, I.F.; Ferreira, F.V.; Souza, D.H.S.; Gouveia, R.F.; Lona, L.M.F.; Morales, A.R.; Mei, L.H.I. Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur. Polym. J. 2017, 97, 356–365. [Google Scholar] [CrossRef]
- Kickelbick, G. Hybrid Materials: Synthesis, Characterization, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Zou, H.; Wu, S.; Shen, J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef] [PubMed]
- Althues, H.; Henle, J.; Kaskel, S. Functional inorganic nanofillers for transparent polymers. Chem. Soc. Rev. 2007, 36, 1454–1465. [Google Scholar] [CrossRef]
- Edmondson, S.; Osborne, V.L.; Huck, W.T.S. Polymer brushes via surface-initiated polymerizations. Chem. Soc. Rev. 2004, 33, 14–22. [Google Scholar] [CrossRef]
- Schmidt, G.; Malwitz, M.M. Properties of polymer–nanoparticle composites. Curr. Opin. Colloid Interface Sci. 2003, 8, 103–108. [Google Scholar] [CrossRef]
- Agrawal, M.; Gupta, S.; Stamm, M. Recent developments in fabrication and applications of colloid based composite particles. J. Mater. Chem. 2011, 21, 615–627. [Google Scholar] [CrossRef]
- Li, S.; Meng Lin, M.; Toprak, M.S.; Kim, D.K.; Muhammed, M. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 2010, 1, 5214. [Google Scholar] [CrossRef]
- Kickelbick, G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci. 2003, 28, 83–114. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Zhu, W.; Cui, Y. Synthesis of polymeric nanocomposite hydrogels containing the pendant ZnS nanoparticles: Approach to higher refractive index optical polymeric nanocomposites. Macromolecules 2018, 51, 2672–2681. [Google Scholar] [CrossRef]
- Stöhr, J. NEXAFS Spectroscopy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 25. [Google Scholar]
- Norman, D. X-ray absorption spectroscopy (EXAFS and XANES) at surfaces. J. Phys. C Solid State Phys. 1986, 19, 3273–3311. [Google Scholar] [CrossRef]
- Zen, A.; Pflaum, J.; Hirschmann, S.; Zhuang, W.; Jaiser, F.; Asawapirom, U.; Rabe, J.P.; Scherf, U.; Neher, D. Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors. Adv. Funct. Mater. 2004, 14, 757–764. [Google Scholar] [CrossRef]
- DeLongchamp, D.M.; Kline, R.J.; Fischer, D.A.; Richter, L.J.; Toney, M.F. Molecular characterization of organic electronic films. Adv. Mater. 2011, 23, 319–337. [Google Scholar] [CrossRef]
- Kline, R.J.; DeLongchamp, D.M.; Fischer, D.A.; Lin, E.K.; Heeney, M.; McCulloch, I.; Toney, M.F. Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films. Appl. Phys. Lett. 2007, 90, 062117. [Google Scholar] [CrossRef]
- Banerjee, S.; Hemraj-Benny, T.; Balasubramanian, M.; Fischer, D.A.; Misewich, J.A.; Wong, S.S. Ozonized single-walled carbon nanotubes investigated using NEXAFS spectroscopy. Chem. Commun. 2004, 772–773. [Google Scholar] [CrossRef]
- Schäfer, T.; Hertkorn, N.; Artinger, R.; Claret, F.; Bauer, A. Functional group analysis of natural organic colloids and clay association kinetics using C(1s) spectromicroscopy. J. Phys. IV Fr. 2003, 104, 409–412. [Google Scholar] [CrossRef]
- McNeill, C.R.; Watts, B.; Thomsen, L.; Ade, H.; Greenham, N.C.; Dastoor, P.C. X-ray microscopy of photovoltaic polyfluorene blends: Relating nanomorphology to device performance. Macromolecules 2007, 40, 3263–3270. [Google Scholar] [CrossRef]
- Ade, H.; Stoll, H. Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials. Nat. Mater. 2009, 8, 281–290. [Google Scholar] [CrossRef]
- Sirringhaus, H.; Brown, P.J.; Friend, R.H.; Nielsen, M.M.; Bechgaard, K.; Langeveld-Voss, B.M.W.; Spiering, A.J.H.; Janssen, R.A.J.; Meijer, E.W.; Herwig, P.; et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401, 685–688. [Google Scholar] [CrossRef]
- Cody, G.D.; Ade, H.; Wirick, S.; Mitchell, G.D.; Davis, A. Determination of chemical-structural changes in vitrinite accompanying luminescence alteration using C-NEXAFS analysis. Org. Geochem. 1998, 28, 441–455. [Google Scholar] [CrossRef]
- Hemraj-Benny, T.; Banerjee, S.; Sambasivan, S.; Balasubramanian, M.; Fischer, D.A.; Eres, G.; Puretzky, A.A.; Geohegan, D.B.; Lowndes, D.H.; Han, W. Near-edge X-ray absorption fine structure spectroscopy as a tool for investigating nanomaterials. Small 2006, 2, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Su, G.M.; Patel, S.N.; Pemmaraju, C.D.; Prendergast, D.; Chabinyc, M.L. First-principles predictions of near-edge X-ray absorption fine structure spectra of semiconducting polymers. J. Phys. Chem. C 2017, 121, 9142–9152. [Google Scholar] [CrossRef]
- Urquhart, S.; Ade, H. Trends in the carbonyl core (C 1S, O 1S)→ π*C=O transition in the near-edge X-ray absorption fine structure spectra of organic molecules. J. Phys. Chem. B 2002, 106, 8531–8538. [Google Scholar] [CrossRef]
- Yoon, W.S.; Grey, C.P.; Balasubramanian, M.; Yang, X.Q.; McBreen, J. In situ X-ray absorption spectroscopic study on LiNi0.5Mn0.5O2 cathode material during electrochemical cycling. Chem. Mater. 2003, 15, 3161–3169. [Google Scholar] [CrossRef]
- Sharpe, L.R.; Heineman, W.R.; Elder, R.C. EXAFS spectroelectrochemistry. Chem. Rev. 1990, 90, 705–722. [Google Scholar] [CrossRef]
- Chadwick, A.V.; Savin, S.L.P.; Fiddy, S.; Alcantara, R.; Fernández Lisbona, D.; Lavela, P.; Ortiz, G.F.; Tirado, J.L. Formation and oxidation of nanosized metal particles by electrochemical reaction of Li and Na with NiCo2O4: X-ray absorption spectroscopic study. J. Phys. Chem. C 2007, 111, 4636–4642. [Google Scholar] [CrossRef]
- Delmas, C.; Peres, J.P.; Rougier, A.; Demourgues, A.; Weill, F.; Chadwick, A.; Broussely, M.; Perton, F.; Biensan, P.; Willmann, P. On the behavior of the LixNiO2 system: An electrochemical and structural overview. J. Power Sources 1997, 68, 120–125. [Google Scholar] [CrossRef]
- Melke, J.; Peter, B.; Habereder, A.; Ziegler, J.; Fasel, C.; Nefedov, A.; Sezen, H.; Woll, C.; Ehrenberg, H.; Roth, C. Metal-support interactions of platinum nanoparticles decorated N-doped carbon nanofibers for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 82–90. [Google Scholar] [CrossRef]
- Grave, C.; Risko, C.; Shaporenko, A.; Wang, Y.; Nuckolls, C.; Ratner, M.A.; Rampi, M.A.; Zharnikov, M. Charge transport through oligoarylene self-assembled monolayers: Interplay of molecular organization, metal–molecule interactions, and electronic structure. Adv. Funct. Mater. 2007, 17, 3816–3828. [Google Scholar] [CrossRef]
- Park, J.; Yang, R.; Hoven, C.V.; Garcia, A.; Fischer, D.A.; Nguyen, T.Q.; Bazan, G.C.; DeLongchamp, D.M. Structural characterization of conjugated polyelectrolyte electron transport layers by NEXAFS spectroscopy. Adv. Mater. 2008, 20, 2491–2496. [Google Scholar] [CrossRef]
- Flank, A.M.; Weininger, M.; Mortenson, L.E.; Cramer, S.P. Single crystal EXAFS of nitrogenase. J. Am. Chem. Soc. 1986, 108, 1049–1055. [Google Scholar] [CrossRef]
- Fujii, K.; Akamatsu, K.; Yokoya, A. Near-edge X-ray absorption fine structure of DNA nucleobases thin film in the nitrogen and oxygen K-edge region. J. Phys. Chem. B 2004, 108, 8031–8035. [Google Scholar] [CrossRef]
- Peters, R.D.; Nealey, P.F.; Crain, J.N.; Himpsel, F.J. A near edge X-ray absorption fine structure spectroscopy investigation of the structure of self-assembled films of octadecyltrichlorosilane. Langmuir 2002, 18, 1250–1256. [Google Scholar] [CrossRef]
- Johnson, P.S.; Huang, C.; Kim, M.; Safron, N.S.; Arnold, M.S.; Wong, B.M.; Gopalan, P.; Himpsel, F.J. Orientation of a monolayer of dipolar molecules on graphene from X-ray absorption spectroscopy. Langmuir 2014, 30, 2559–2565. [Google Scholar] [CrossRef] [PubMed]
- Winter, A.D.; Czaniková, K.; Larios, E.; Vishnyakov, V.; Jaye, C.; Fischer, D.A.; Omastová, M.; Campo, E.M. Interface dynamics in strained polymer nanocomposites: Stick-slip wrapping as a prelude to mechanical backbone twisting derived from sonication-induced amorphization. J. Phys. Chem. C 2015, 119, 20091–20099. [Google Scholar] [CrossRef]
- Tang, Y.H.; Zhang, P.; Kim, P.S.; Sham, T.K.; Hu, Y.F.; Sun, X.H.; Wong, N.B.; Fung, M.K.; Zheng, Y.F.; Lee, C.S.; et al. Amorphous carbon nanowires investigated by near-edge-X-ray-absorption-fine-structures. Appl. Phys. Lett. 2001, 79, 3773–3775. [Google Scholar] [CrossRef]
- Tang, Y.H.; Sham, T.K.; Hu, Y.F.; Lee, C.S.; Lee, S.T. Near-edge X-ray absorption fine structure study of helicity and defects in carbon nanotubes. Chem. Phys. Lett. 2002, 366, 636–641. [Google Scholar] [CrossRef]
- Kang, T.; Banquy, X.; Heo, J.; Lim, C.; Lynd, N.A.; Lundberg, P.; Oh, D.X.; Lee, H.K.; Hong, Y.K.; Hwang, D.S.; et al. Mussel-inspired anchoring of polymer loops that provide superior surface lubrication and antifouling properties. ACS Nano 2016, 10, 930–937. [Google Scholar] [CrossRef] [Green Version]
- González-Orive, A.; Giner, I.; de los Arcos, T.; Keller, A.; Grundmeier, G. Analysis of polymer/oxide interfaces under ambient conditions–An experimental perspective. Appl. Surf. Sci. 2018, 442, 581–594. [Google Scholar] [CrossRef]
- Isegawa, K.; Ueda, K.; Hiwasa, S.; Amemiya, K.; Mase, K.; Kondoh, H. Formation of carbonate on Ag (111) under exposure to ethylene and oxygen gases evidenced by near ambient pressure XPS and NEXAFS. Chem. Lett. 2019, 48, 159–162. [Google Scholar] [CrossRef]
- Newbury, D.E. X-ray microanalysis in the variable pressure (environmental) scanning electron microscope. J. Res. Natl. Inst. Stand. Technol. 2002, 107, 567–603. [Google Scholar] [CrossRef] [PubMed]
- Streibel, V.; Hävecker, M.; Yi, Y.; Vélez, J.J.V.; Skorupska, K.; Stotz, E.; Knop-Gericke, A.; Schlögl, R.; Arrigo, R. In situ electrochemical cells to study the oxygen evolution reaction by near ambient pressure X-ray photoelectron spectroscopy. Top. Catal. 2018, 61, 2064–2084. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Klyushin, A.; Huang, X.; Jones, T.; Teschner, D.; Girgsdies, F.; Rodenas, T.; Schlögl, R.; Heumann, S. Cobalt-bridged ionic liquid polymer on a carbon nanotube for enhanced oxygen evolution reaction activity. Angew. Chem. Int. Ed. 2018, 57, 3514–3518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saveleva, V.A.; Papaefthimiou, V.; Daletou, M.K.; Doh, W.H.; Ulhaq-Bouillet, C.; Diebold, M.; Zafeiratos, S.; Savinova, E.R. Operando near ambient pressure XPS (NAP-XPS) study of the Pt electrochemical oxidation in H2O and H2O/O2 ambients. J. Phys. Chem. C 2016, 120, 15930–15940. [Google Scholar] [CrossRef]
- Pan, S.; Wang, N.; Xiong, D.; Deng, Y.; Shi, Y. Fabrication of superhydrophobic coating via spraying method and its applications in anti-icing and anti-corrosion. Appl. Surf. Sci. 2016, 389, 547–553. [Google Scholar] [CrossRef]
- Götsch, T.; Köpfle, N.; Grünbacher, M.; Bernardi, J.; Carbonio, E.A.; Hävecker, M.; Knop-Gericke, A.; Bekheet, M.F.; Schlicker, L.; Doran, A. Crystallographic and electronic evolution of lanthanum strontium ferrite (La0.6Sr0.4FeO3− δ) thin film and bulk model systems during iron exsolution. Phys. Chem. Chem. Phys 2019, 21, 3781–3794. [Google Scholar] [CrossRef]
- Toyoshima, R.; Kondoh, H. In-situ observations of catalytic surface reactions with soft x-rays under working conditions. J. Phys. Condens. Matter 2015, 27, 083003. [Google Scholar] [CrossRef]
- Dietrich, P.M.; Bahr, S.; Yamamoto, T.; Meyer, M.; Thissen, A. Chemical surface analysis on materials and devices under functional conditions—Environmental photoelectron spectroscopy as non-destructive tool for routine characterization. J. Electron Spectrosc. Relat. Phenom. 2019, 231, 118–126. [Google Scholar] [CrossRef]
- Jürgensen, A.; Esser, N.; Hergenröder, R. Near ambient pressure XPS with a conventional X-ray source. Surf. Interface Anal. 2012, 44, 1100–1103. [Google Scholar] [CrossRef]
- Takagi, Y.; Wang, H.; Uemura, Y.; Nakamura, T.; Yu, L.; Sekizawa, O.; Uruga, T.; Tada, M.; Samjeské, G.; Iwasawa, Y.; et al. In situ study of oxidation states of platinum nanoparticles on a polymer electrolyte fuel cell electrode by near ambient pressure hard X-ray photoelectron spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 6013–6021. [Google Scholar] [CrossRef]
- Pletincx, S.; Marcoen, K.; Trotochaud, L.; Fockaert, L.L.; Mol, J.M.C.; Head, A.R.; Karslioğlu, O.; Bluhm, H.; Terryn, H.; Hauffman, T. Unravelling the chemical influence of water on the PMMA/aluminum oxide hybrid interface in situ. Sci. Rep. 2017, 7, 13341. [Google Scholar] [CrossRef] [PubMed]
- Pletincx, S.; Trotochaud, L.; Fockaert, L.L.; Mol, J.M.C.; Head, A.R.; Karslıoğlu, O.; Bluhm, H.; Terryn, H.; Hauffman, T. In situ characterization of the initial effect of water on molecular interactions at the interface of organic/inorganic hybrid systems. Sci. Rep. 2017, 7, 45123. [Google Scholar] [CrossRef] [PubMed]
Functionality | Binding Energy (eV) |
---|---|
C-H, C-C (hydrocarbon) | 285.0 |
C-N (amine) | 286.0 |
C-O-H, C-O-C (alcohol, ether) | 286.5 |
C=O (carbonyl) | 288.0 |
N-C=O (amide) | 288.2 |
O-C=O (acid, ester) | 289.0 |
N-(C=O)-N (urea) | 289.0 |
O-(C=O)-N (carbamate) | 289.6 |
O-(C=O)-O (carbonate) | 290.3 |
C-Cl (Cl with carbon) | 286.5 |
C-F (F with carbon) | 287.8 |
-CH2CF2- (2F with carbon) | 290.6 |
-CF2CF2- (PTFE) | 292.0 |
-CF3- (3F with carbon) | 293–294 |
Polymer | C(1s) Energy (eV) | O(1s) Energy (eV) |
---|---|---|
polycarbonate | 290.4 | 532.9 |
polyurethane | 289.9 | N/A |
polyurea | 289.5 | N/A |
poly(ethylene succinate) | 288.6 | 532.2 |
poly(methyl methacrylate) | 288.5 | 532.1 |
nylon-6 | 288.2 | 532.2 |
poly(ethylene terephthalate) | 288.15 | 531.5 |
poly(vinyl methyl ketone) | 286.6 | 531.3 |
eV | Transition | Functionality |
---|---|---|
283.7 | 1s→π* | Quinone |
1s→π* | Protonated/alkylated | |
284.9–285.5 | 1s→π* | Aromatic and PNA Carbonyl substituted |
285.8–286.4 | 1s→π* | Aromatic, Phenolic C-OH Ketone |
287.1–287.4 | 1s→π* | Aliphatic carbonyl |
287.7–288.3 | 1s→π* | Aromatic carbonyl C=O |
287.6–288.2 | 1s→3p/σ* | CH3, CH2, CH |
288.2–288.6 | 1s→π* | COOH |
289.3–289.5 | 1s→3p/σ* | C-OH, alcohol |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, D.; Cho, S.; Nam, J.; Lee, H.; Kim, M. X-ray-Based Spectroscopic Techniques for Characterization of Polymer Nanocomposite Materials at a Molecular Level. Polymers 2020, 12, 1053. https://doi.org/10.3390/polym12051053
Son D, Cho S, Nam J, Lee H, Kim M. X-ray-Based Spectroscopic Techniques for Characterization of Polymer Nanocomposite Materials at a Molecular Level. Polymers. 2020; 12(5):1053. https://doi.org/10.3390/polym12051053
Chicago/Turabian StyleSon, Dongwan, Sangho Cho, Jieun Nam, Hoik Lee, and Myungwoong Kim. 2020. "X-ray-Based Spectroscopic Techniques for Characterization of Polymer Nanocomposite Materials at a Molecular Level" Polymers 12, no. 5: 1053. https://doi.org/10.3390/polym12051053
APA StyleSon, D., Cho, S., Nam, J., Lee, H., & Kim, M. (2020). X-ray-Based Spectroscopic Techniques for Characterization of Polymer Nanocomposite Materials at a Molecular Level. Polymers, 12(5), 1053. https://doi.org/10.3390/polym12051053