Preparation of Pyridylamido Hafnium Complexes for Coordinative Chain Transfer Polymerization
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Preparation of Hf Complexes
3.2. X-ray Crystallographic Analyses
3.3. Polymerization Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Boussie, T.R.; Diamond, G.M.; Goh, C.; Hall, K.A.; LaPointe, A.M.; Leclerc, M.; Lund, C.; Murphy, V.; Shoemaker, J.A.W.; Tracht, U.; et al. A fully integrated high-throughput screening methodology for the discovery of new polyolefin catalysts: Discovery of a new class of high temperature single-site group (IV) copolymerization catalysts. J. Am. Chem. Soc. 2003, 125, 4306–4317. [Google Scholar] [CrossRef] [PubMed]
- Boussie, T.R.; Diamond, G.M.; Goh, C.; Hall, K.A.; LaPointe, A.M.; Leclerc, M.K.; Murphy, V.; Shoemaker, J.A.W.; Turner, H.; Rosen, R.K.; et al. Nonconventional catalysts for isotactic propene polymerization in solution developed by using high-throughput-screening technologies. Angew. Chem. Int. Ed. 2006, 45, 3278–3283. [Google Scholar] [CrossRef] [PubMed]
- Boussie, T.R.; Diamond, G.M.; Goh, C.; LaPointe, K.M.; Lund, C.; Murphy, W. Substituted Pyridyl Amine Catalysts, Complexes and Compositions. U.S. Patent No. 6750345B2, 15 June 2004. [Google Scholar]
- Frazier, K.A.; Boone, H.; Vosejpka, P.C.; Stevens, J.C. High Activity Olefin Polymerization Catalyst and Process. U.S. Patent No. 6953764B2, 11 October 2005. [Google Scholar]
- Cueny, E.S.; Johnson, H.C.; Anding, B.J.; Landis, C.R. Mechanistic studies of hafnium-pyridyl amido-catalyzed 1-octene polymerization and chain transfer using quench-labeling methods. J. Am. Chem. Soc. 2017, 139, 11903–11912. [Google Scholar] [CrossRef] [PubMed]
- Froese, R.D.J.; Hustad, P.D.; Kuhlman, R.L.; Wenzel, T.T. Mechanism of activation of a hafnium pyridyl−amide olefin polymerization catalyst: ligand modification by monomer. J. Am. Chem. Soc. 2007, 129, 7831–7840. [Google Scholar] [CrossRef]
- Baek, J.W.; Kwon, S.J.; Lee, H.J.; Kim, T.J.; Ryu, J.Y.; Lee, J.; Shin, E.J.; Lee, K.S.; Lee, B.Y. Preparation of half- and post-metallocene hafnium complexes with tetrahydroquinoline and tetrahydrophenanthroline frameworks for olefin polymerization. Polymers 2019, 11, 1093. [Google Scholar] [CrossRef] [Green Version]
- Frazier, K.A.; Froese, R.D.; He, Y.; Klosin, J.; Theriault, C.N.; Vosejpka, P.C.; Zhou, Z.; Abboud, K.A. Pyridylamido hafnium and zirconium complexes: Synthesis, dynamic behavior, and ethylene/1-octene and propylene polymerization reactions. Organometallics 2011, 30, 3318–3329. [Google Scholar] [CrossRef]
- Jun, S.H.; Park, J.H.; Lee, C.S.; Park, S.Y.; Go, M.J.; Lee, J.; Lee, B.Y. Preparation of phosphine-amido hafnium and zirconium complexes for olefin polymerization. Organometallics 2013, 32, 7357–7365. [Google Scholar] [CrossRef]
- Alfano, F.; Boone, H.W.; Busico, V.; Cipullo, R.; Stevens, J.C. Polypropylene “Chain Shuttling” at enantiomorphous and enantiopure catalytic species: Direct and quantitative evidence from polymer microstructure. Macromolecules 2007, 40, 7736–7738. [Google Scholar] [CrossRef]
- Domski, G.J.; Eagan, J.M.; De Rosa, C.; Di Girolamo, R.; LaPointe, A.M.; Lobkovsky, E.B.; Talarico, G.; Coates, G.W. Combined experimental and theoretical approach for living and isoselective propylene polymerization. ACS Catal. 2017, 7, 6930–6937. [Google Scholar] [CrossRef] [Green Version]
- De Rosa, C.; Di Girolamo, R.; Talarico, G. Expanding the origin of stereocontrol in propene polymerization catalysis. ACS Catal. 2016, 6, 3767–3770. [Google Scholar] [CrossRef]
- Eagan, J.M.; Xu, J.; Di Girolamo, R.; Thurber, C.M.; Macosko, C.W.; La Pointe, A.M.; Bates, F.S.; Coates, G.W. Combining polyethylene and polypropylene: Enhanced performance with PE/iPP multiblock polymers. Science 2017, 355, 814–816. [Google Scholar] [CrossRef] [Green Version]
- Park, S.S.; Kim, C.S.; Kim, S.D.; Kwon, S.J.; Lee, H.M.; Kim, T.H.; Jeon, J.Y.; Lee, B.Y. Biaxial chain growth of polyolefin and polystyrene from 1,6-Hexanediylzinc species for triblock copolymers. Macromolecules 2017, 50, 6606–6616. [Google Scholar] [CrossRef]
- Valente, A.; Mortreux, A.; Visseaux, M.; Zinck, P. Coordinative chain transfer polymerization. Chem. Rev. 2013, 113, 3836–3857. [Google Scholar] [CrossRef] [PubMed]
- van Meurs, M.; Britovsek, G.J.P.; Gibson, V.C.; Cohen, S.A. Polyethylene Chain growth on zinc catalyzed by olefin polymerization catalysts: A comparative investigation of highly active catalyst systems across the transition series. J. Am. Chem. Soc. 2005, 127, 9913–9923. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Baek, J.W.; Kim, T.J.; Park, H.S.; Moon, S.H.; Park, K.L.; Bae, S.M.; Park, J.; Lee, B.Y. Synthesis of long-chain branched polyolefins by coordinative chain transfer polymerization. Macromolecules 2019, 52, 9311–9320. [Google Scholar] [CrossRef]
- Rocchigiani, L.; Busico, V.; Pastore, A.; Macchioni, A. Comparative NMR study on the reactions of Hf(IV) organometallic complexes with Al/Zn Alkyls. Organometallics 2016, 35, 1241–1250. [Google Scholar] [CrossRef] [Green Version]
- Arriola, D.J.; Carnahan, E.M.; Hustad, P.D.; Kuhlman, R.L.; Wenzel, T.T. Catalytic production of olefin block copolymers via chain shuttling polymerization. Science 2006, 312, 714–719. [Google Scholar] [CrossRef]
- Hustad, P.O.; Kuhlman, R.L.; Arriola, D.J.; Carnahan, E.M.; Wenzel, T.T. Continuous production of ethylene-based diblock copolymers using coordinative chain transfer polymerization. Macromolecules 2007, 40, 7061–7064. [Google Scholar] [CrossRef]
- Saeb, M.R.; Mohammadi, Y.; Kermaniyan, T.S.; Zinck, P.; Stadler, F.J. Unspoken aspects of chain shuttling reactions: Patterning the molecular landscape of olefin multi-block copolymers. Polymer 2017, 116, 55–75. [Google Scholar] [CrossRef] [Green Version]
- Vittoria, A.; Busico, V.; Cannavacciuolo, F.D.; Cipullo, R. Molecular kinetic study of “Chain Shuttling” Olefin copolymerization. ACS Catal. 2018, 8, 5051–5061. [Google Scholar] [CrossRef]
- Kim, S.D.; Kim, T.J.; Kwon, S.J.; Kim, T.H.; Baek, J.W.; Park, H.S.; Lee, H.J.; Lee, B.Y. Peroxide-mediated Alkyl–Alkyl coupling of dialkylzinc: A useful tool for synthesis of ABA-Type Olefin triblock copolymers. Macromolecules 2018, 51, 4821–4828. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Park, S.H.; Kim, D.H.; Park, S.S.; Park, G.H.; Lee, B.Y. Synthesis of polyolefin-block-polystyrene through sequential coordination and anionic polymerizations. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 3110–3118. [Google Scholar] [CrossRef]
- Kim, C.S.; Park, S.S.; Kim, S.D.; Kwon, S.J.; Baek, J.W.; Lee, B.Y. Polystyrene chain growth from di-end-functional polyolefins for polystyrene-polyolefin-polystyrene block copolymers. Polymers 2017, 9, 481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Park, S.S.; Park, S.H.; Jeon, J.Y.; Kim, H.B.; Lee, B.Y. Preparation of polystyrene-polyolefin multiblock copolymers by sequential coordination and anionic polymerization. RSC Adv. 2017, 7, 5948–5956. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.J.; Baek, J.W.; Moon, S.H.; Lee, H.J.; Park, K.L.; Bae, S.M.; Lee, J.C.; Lee, P.C.; Lee, B.Y. Polystyrene chain growth initiated from dialkylzinc for synthesis of polyolefin-polystyrene block copolymers. Polymers 2020, 12, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuccaccia, C.; Macchioni, A.; Busico, V.; Cipullo, R.; Talarico, G.; Alfano, F.; Boone, H.W.; Frazier, K.A.; Hustad, P.D.; Stevens, J.C.; et al. Intra- and intermolecular NMR studies on the activation of arylcyclometallated hafnium pyridyl-amido olefin polymerization precatalysts. J. Am. Chem. Soc. 2008, 130, 10354–10368. [Google Scholar] [CrossRef]
- Kwon, S.J.; Baek, J.W.; Lee, H.J.; Kim, T.J.; Ryu, J.Y.; Lee, J.; Shin, E.J.; Lee, K.S.; Lee, B.Y. Preparation of pincer hafnium complexes for olefin polymerization. Molecules 2019, 24, 1676. [Google Scholar] [CrossRef] [Green Version]
- Meiries, S.; Le Duc, G.; Chartoire, A.; Collado, A.; Speck, K.; Arachchige, K.S.A.; Slawin, A.M.Z.; Nolan, S.P. Large yet flexible N-Heterocyclic carbene ligands for palladium catalysis. Chem. A Eur. J. 2013, 19, 17358–17368. [Google Scholar] [CrossRef]
- Atwater, B.; Chandrasoma, N.; Mitchell, D.; Rodriguez, M.J.; Pompeo, M.; Froese, R.D.J.; Organ, M.G. The selective cross-coupling of secondary Alkyl Zinc reagents to five-membered-ring heterocycles using Pd-PEPPSI-IHeptCl. Angew. Chem. Int. Ed. 2015, 54, 9502–9506. [Google Scholar] [CrossRef]
- Matsumoto, K.; Takayanagi, M.; Suzuki, Y.; Koga, N.; Nagaoka, M. Atomistic chemical computation of Olefin polymerization reaction catalyzed by (pyridylamido)hafnium(IV) complex: Application of Red Moon simulation. J. Comput. Chem. 2019, 40, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Eagan, J.M.; Kim, S.S.; Pan, S.; Lee, B.; Klimovica, K.; Jin, K.; Lin, T.W.; Howard, M.J.; Ellison, C.J.; et al. Compatibilization of Isotactic Polypropylene (iPP) and High-Density Polyethylene (HDPE) with iPP–PE Multiblock copolymers. Macromolecules 2018, 51, 8585–8596. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Motta, A.; Gao, Y.; Stalzer, M.M.; Delferro, M.; Liu, B.; Lohr, T.L.; Marks, T.J. Cationic Pyridylamido Adsorbate on Brønsted Acidic Sulfated Zirconia: A molecular supported organohafnium catalyst for olefin Homo- and Co-Polymerization. ACS Catal. 2018, 8, 4893–4901. [Google Scholar] [CrossRef]
- Cueny, E.S.; Johnson, H.C.; Landis, C.R. Selective Quench-Labeling of the Hafnium-Pyridyl Amido-Catalyzed Polymerization of 1-Octene in the presence of Trialkyl-Aluminum chain-transfer reagents. ACS Catal. 2018, 8, 11605–11614. [Google Scholar] [CrossRef]
- Johnson, H.C.; Cueny, E.S.; Landis, C.R. Chain transfer with Dialkyl Zinc during Hafnium-Pyridyl Amido-Catalyzed polymerization of 1-Octene: Relative rates, reversibility, and kinetic models. ACS Catal. 2018, 8, 4178–4188. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, X.; Zhang, J.; Chen, J.; Lohr, T.L.; Marks, T.J. Catalyst nuclearity effects on Stereo- and Regioinduction in Pyridylamidohafnium-Catalyzed Propylene and 1-Octene polymerizations. Macromolecules 2018, 51, 2401–2410. [Google Scholar] [CrossRef]
- Matsumoto, K.; Takayanagi, M.; Sankaran, S.K.; Koga, N.; Nagaoka, M. Role of the counteranion in the reaction mechanism of propylene polymerization catalyzed by a (Pyridylamido)hafnium(IV) complex. Organometallics 2018, 37, 343–349. [Google Scholar] [CrossRef]
- Nifant’ev, I.E.; Ivchenko, P.V.; Bagrov, V.V.; Nagy, S.M.; Winslow, L.N.; Merrick-Mack, J.A.; Mihan, S.; Churakov, A.V. Zirconium and hafnium complexes based on 2-aryl-8-arylaminoquinoline ligands: Synthesis, molecular structure, and catalytic performance in ethylene copolymerization. Dalton Trans. 2013, 42, 1501–1511. [Google Scholar] [CrossRef]
- Li, G.; Lamberti, M.; D’Amora, S.; Pellecchia, C. C1-Symmetric pentacoordinate Anilidopyridylpyrrolide Zirconium(IV) complexes as highly Isospecific olefin polymerization catalysts. Macromolecules 2010, 43, 8887–8891. [Google Scholar] [CrossRef]
- Haas, I.; Kretschmer, W.P.; Kempe, R. Synthesis of alumina-terminated linear PE with a hafnium aminopyridinate catalyst. Organometallics 2011, 30, 4854–4861. [Google Scholar] [CrossRef]
- Kulyabin, P.S.; Goryunov, G.P.; Mladentsev, D.Y.; Uborsky, D.V.; Voskoboynikov, A.Z.; Canich, J.A.M.; Hagadorn, J.R. Reactivity of C1-Symmetric heteroarylamido hafnium complexes towards unsaturated electrophilic molecules: Development of new families of olefin polymerization catalysts. Chem. A Eur. J. 2019, 25, 10478–10489. [Google Scholar] [CrossRef]
- Liang, T.; Goudari, S.B.; Chen, C. A simple and versatile nickel platform for the generation of branched high molecular weight polyolefins. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Chen, C. Emerging palladium and nickel catalysts for copolymerization of olefins with polar monomers. Angew. Chem. Int. Ed. 2019, 58, 7192–7200. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.F.; Yan, Y.; Solan, G.A.; Ma, Y.; Sun, W.H. Recent advancements in N-ligated group 4 molecular catalysts for the (co)polymerization of ethylene. Coord. Chem. Rev. 2020, 411. [Google Scholar] [CrossRef]
- Soshnikov, I.E.; Bryliakov, K.P.; Antonov, A.A.; Sun, W.H.; Talsi, E.P. Ethylene polymerization of nickel catalysts with α-diimine ligands: Factors controlling the structure of active species and polymer properties. Dalton Trans. 2019, 48, 7974–7984. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, C. A continuing legend: The Brookhart-type α-diimine nickel and palladium catalysts. Polym. Chem. 2019, 10, 2354–2369. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Qasim, M.; Pang, W.; Chen, C. Ligand–metal secondary interactions in phosphine–sulfonate palladium and nickel catalyzed ethylene (co)polymerization. Polym. Chem. 2020, 11, 411–416. [Google Scholar] [CrossRef]
- Muhammad, Q.; Tan, C.; Chen, C. Concerted steric and electronic effects on α-diimine nickel- and palladium-catalyzed ethylene polymerization and copolymerization. Sci. Bull. 2020, 65, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Scholte, T.G.; Meijerink, N.L.J.; Schoffeleers, H.M.; Brands, A.M.G. Mark–Houwink equation and GPC calibration for linear short-chain branched polyolefines, including polypropylene and ethylene–propylene copolymers. J. Appl. Polym. Sci. 1984, 29, 3763–3782. [Google Scholar] [CrossRef]
- Zhang, C.; Pan, H.; Klosin, J.; Tu, S.; Jaganathan, A.; Fontaine, P.P. Synthetic optimization and scale-up of imino–amido hafnium and zirconium olefin polymerization catalysts. Org. Process Res. Dev. 2015, 19, 1383–1391. [Google Scholar] [CrossRef]
- Machat, M.R.; Fischer, A.; Schmitz, D.; Vöst, M.; Drees, M.; Jandl, C.; Pöthig, A.; Casati, N.P.M.; Scherer, W.; Rieger, B. Behind the scenes of Group 4 metallocene catalysis: Examination of the Metal–Carbon bond. Organometallics 2018, 37, 2690–2705. [Google Scholar] [CrossRef]
- Sian, L.; Macchioni, A.; Zuccaccia, C. Understanding the Role of Metallocenium Ion-Pair Aggregates on the Rate of Olefin Insertion into the Metal–Carbon Bond. ACS Catal. 2020, 10, 1591–1606. [Google Scholar] [CrossRef]
I | 21 | 23 | 34 | 36 | |
---|---|---|---|---|---|
Hf−CH3 | 2.210 (3) | 2.215 (14) | 2.224 (2) | 2.219 (5) | 2.273 (3) |
2.223 (3) | 2.212 (11) | 2.232 (2) | 2.250 (5) | 2.326 (3) | |
Hf−Cnaphthyl | 2.256 (2) | 2.251 (9) | 2.264 (2) | 2.276 (5) | 2.265 (4) |
Hf−Namido | 2.081 (2) | 2.073 (8) | 2.071 (2) | 2.070 (4) | 2.067 (3) |
Hf−Npyridine | 2.295 (2) | 2.310 (8) | 2.306 (2) | 2.302 (4) | 2.300 (3) |
pyridine plane−Hf | 0.2491 (1) | 0.5380 (4) | 0.6926 (2) | 0.3915 (4) | 0.4810 (1) |
H3C−Hf−CH3 | 105.7 (2) | 104.8 (5) | 104.16 (9) | 108.3 (2) | 104.9 (1) |
H3C−Hf−Npyridine | 134.2 (1) | 130.9 (5) | 116.13 (8) | 112.4 (2) | 136.8 (1) |
119.2 (1) | 123.5 (4) | 138.58 (8) | 138.0 (2) | 117.6 (1) | |
Namido−Hf−Cnaphthyl | 140.63 (8) | 141.7 (3) | 140.60 (7) | 139.8 (2) | 139.5 (1) |
Caryl−Namido−Hf | 124.7 (1) | 125.5 (6) | 119.2 (1) | 118.3 (3) | 120.3 (2) |
Caryl−Namido−CH | 110.8 (2) | 110.0 (7) | 113.8 (2) | 114.4 (4) | 112.2 (3) |
Hf−Namido−CH | 123.7 (1) | 125.5 (6) | 125.9 (1) | 124.6 (3) | 123.9 (2) |
Npyridine−Cpyridine−Cnaphthyl−Cnaphthyl(Hf) | 12.8 (3) | 15.9 (1) | 14.4 (2) | 19.9 (6) | 17.7 (4) |
Npyridine−Cpyridine−CH−Namido | 9.5 (2) | 11.3 (1) | 9.2 (2) | 15.4 (6) | 18.3 (4) |
Npyridine−Hf−Namido−Caryl | 161.0 (2) | 160.2 (7) | 174.4 (2) | 148.2 (4) | 143.6 (3) |
H3C−Hf−Namido−Caryl | 28.5 (2) | 39.5 (8) | 61.4 (2) | 12.1 (4) | 8.2 (2) |
83.3 (2) | 71.5 (8) | 49.4 (2) | 103.5 (3) | 102.5 (2) | |
Hf−Namido−CH---CH(Me)2 | 175.2 (1) | 179.9 (4) | 171.6 (1) | − | − |
pyridine plane−naphthyl plane | 19.31 (7) | 22.9 (3) | 22.90 (6) | 25.6 (1) | 25.51 (9) |
Entry | Catalyst | (hexyl)2Zn (µmol) | Temperature b (°C) | Yield (g) | FC3c | Expected Mn d (kDa) | Measured Mn e (kDa) | Mw/Mn |
---|---|---|---|---|---|---|---|---|
1 | I (2-iPrPh; -iPr) | 150 | 80−95−61 | 8.5 | 0.20 | 28 | 27 | 1.8 |
2 | 19 (2-iPrPh; -C7H13) | 150 | 80−90−65 | 10.2 | 0.20 | 33 | 28 | 1.9 |
3 | 20 (2-iPrPh; -C6H11) | 150 | 80−90−65 | 10.0 | 0.20 | 33 | 33 | 1.7 |
4 | 21 (2-iPrPh; -C5H9) | 150 | 80−93−63 | 8.1 | 0.18 | 27 | 25 | 1.4 |
5 | 22 (2-iPrPh; -(3-pentyl)) | 150 | 80−88−59 | 5.6 | 0.18 | 19 | 18 | 1.8 |
6 | 23 (2-iPrPh; -Et) | 150 | 80−91−59 | 5.8 | 0.18 | 19 | 19 | 1.4 |
7 | 24 (2-iPrPh; -Ph) | 150 | ~0 | − | − | − | − | |
8 | 33 (Ph; -iPr) | 150 | 80−92−57 | 5.3 | 0.16 | 18 | 19 | 1.4 |
9 | 34 (Ph; -C7H13) | 150 | 80−90−59 | 7.0 | 0.14 | 23 | 22 | 1.6 |
10 | 35 (Ph; -C6H11) | 150 | 80−89−57 | 5.5 | 0.16 | 18 | 19 | 1.5 |
11 | 36 (Ph; -C5H9) | 150 | 80−92−59 | 6.2 | 0.16 | 21 | 19 | 1.4 |
12 | 37 (Ph; -Et) | 150 | 80−89−57 | 3.9 | 0.14 | 13 | 14 | 1.5 |
13 | 20 (2-iPrPh; -C6H11) | 300 | 80−91−63 | 8.5 | 0.19 | 14 | 12 | 1.9 |
14 | 20 (2-iPrPh; -C6H11) | 450 | 80−90−60 | 9.8 | 0.19 | 11 | 9.0 | 1.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, K.L.; Baek, J.W.; Moon, S.H.; Bae, S.M.; Lee, J.C.; Lee, J.; Jeong, M.S.; Lee, B.Y. Preparation of Pyridylamido Hafnium Complexes for Coordinative Chain Transfer Polymerization. Polymers 2020, 12, 1100. https://doi.org/10.3390/polym12051100
Park KL, Baek JW, Moon SH, Bae SM, Lee JC, Lee J, Jeong MS, Lee BY. Preparation of Pyridylamido Hafnium Complexes for Coordinative Chain Transfer Polymerization. Polymers. 2020; 12(5):1100. https://doi.org/10.3390/polym12051100
Chicago/Turabian StylePark, Kyung Lee, Jun Won Baek, Seung Hyun Moon, Sung Moon Bae, Jong Chul Lee, Junseong Lee, Myong Sun Jeong, and Bun Yeoul Lee. 2020. "Preparation of Pyridylamido Hafnium Complexes for Coordinative Chain Transfer Polymerization" Polymers 12, no. 5: 1100. https://doi.org/10.3390/polym12051100
APA StylePark, K. L., Baek, J. W., Moon, S. H., Bae, S. M., Lee, J. C., Lee, J., Jeong, M. S., & Lee, B. Y. (2020). Preparation of Pyridylamido Hafnium Complexes for Coordinative Chain Transfer Polymerization. Polymers, 12(5), 1100. https://doi.org/10.3390/polym12051100