Synthesis and Properties of pH-Thermo Dual Responsive Semi-IPN Hydrogels Based on N,N’-Diethylacrylamide and Itaconamic Acid
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Linear Copolymers P(DEA-co-IAM)
2.3. Preparation of Semi-IPN Hydrogels
2.4. Characterization of the Linear Polymers
2.5. Characterization of the Hydrogels
2.6. Swelling Behavior Study
2.6.1. Swelling Kinetics Measurement
2.6.2. Thermo-sensitive Swelling Property
2.6.3. pH-Sensitive Swelling Property
2.6.4. Deswelling Kinetics Measurements
3. Results and Discussion
3.1. Preparation of Semi-IPN Hydrogels
3.2. 1H NMR Measurement
3.3. FITR Measurement
3.4. Dynamic Light Scattering (DLS) and Gel Permeation Chromatography (GPC)
3.5. Thermal Gravimetric Analyses (TGA)
3.6. Lower Critical Solution Temperature (LCST)
3.7. Interior Morphology
3.8. Rheological Measurement
3.9. Mechanical Properties.
3.10. Swelling Behavior
3.10.1. Swelling Kinetics
3.10.2. Effect of Temperature
3.10.3. Effect of pH
3.10.4. Deswelling Kinetics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, Z.X.; Li, Z.; Xia, Q.B.; Bajalis, E.; Xi, H.X.; Lin, Y.S. Swelling/deswelling kinetics of PNIPAAm hydrogels synthesized by microwave irradiation. Chem. Eng. J. 2008, 142, 263–270. [Google Scholar] [CrossRef]
- Elliott, J.E.; Macdonald, M.; Nie, J.; Bowman, C.N. Structure and swelling of poly(acrylic acid) hydrogels: Effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 2004, 45, 1503–1510. [Google Scholar] [CrossRef]
- Zhang, Y.; Furyk, S.; Bergbreiter, D.E.; Cremer, P.S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the hofmeister series. J. Am. Chem. Soc. 2005, 127, 14505–14510. [Google Scholar] [CrossRef] [PubMed]
- Sershen, S.R.; Mensing, G.A.; Ng, M.; Halas, N.J.; Beebe, D.J.; West, J.L. Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels. Adv. Mater. 2005, 17, 1366–1368. [Google Scholar] [CrossRef]
- Bait, N.; Grassl, B.; Derail, C.; Benaboura, A. Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter. 2011, 7, 2025–2032. [Google Scholar] [CrossRef]
- Kutnyanszky, E.; Hempenius, M.A.; Vancso, G.J. Polymer bottlebrushes with a redox responsive backbone feel the heat: Synthesis and characterization of dual responsive poly-(ferrocenylsilane)s with PNIPAM side chains. Polym. Chem. 2014, 5, 771–783. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Lam, K.Y. A Transient simulation to predict the kinetic behavior of hydrogels responsive to electric stimulus. Biomacromolecules 2006, 7, 1951–1959. [Google Scholar] [CrossRef]
- Li, Y.; Guo, H.; Gan, J.; Zheng, J.; Zhang, Y.; Wu, K.; Lu, M. Novel fast thermal-responnsive poly(N-isopropylacrylamide) hydrogels with functional cyclodextrin interpenetrating polymer networks for controlled drug release. J. Polym. Res. 2015, 22, 91. [Google Scholar] [CrossRef]
- Huang, Z.S.; Shiu, J.W.; Way, T.F.; Rwei, S.P. A thermo-responsive random copolymer of poly(NIPAm-co-FMA) for smart textile applications. Polymer 2019, 184, 121917. [Google Scholar] [CrossRef]
- Erol, O.; Pantula, A.; Liu, W.; Gracias, D.H. Transformer hydrogels: A review. Adv. Mater. Technol. 2019, 4, 1900043. [Google Scholar] [CrossRef] [Green Version]
- Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H.M.; Tran, S.D. Smart Hydrogels in tissue engineering and regenerative medicine. Materials 2019, 12, 3323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inomata, H.; Goto, S.; Saito, S. Phase transition of N-Substituted acrylamide gels. Macromolecules 1990, 23, 4887–4888. [Google Scholar] [CrossRef]
- Liu, H.; Liu, M.; Jin, S.; Chen, S. Synthesis and characterization of fast responsive thermo- and pH-sensitive poly[(N,N-diethylacrylamide)-co-(acrylic acid)] hydrogels. Polym. Int. 2008, 57, 1165–1173. [Google Scholar] [CrossRef]
- Cai, W.; Gupta, R.B. Poly(N-ethylacrylamide) Hydrogels for lignin separation. Ind. Eng. Chem. Res. 2001, 40, 3406–3412. [Google Scholar] [CrossRef]
- Pei, Y.; Chen, J.; Yang, L.; Shi, L.; Tao, Q.; Hui, B.; Li, J. The effect of pH on the LCST of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid). J. Biomater. Sci. Polymer Edn. 2004, 15, 585–594. [Google Scholar] [CrossRef]
- Kostanski, L.K.; Huang, R.; Ghosh, R.; Filipe, C.D.M. Biocompatible poly(N-vinyllactam)-based materials with environmentally-responsive permeability. J. Biomater. Sci. Polym. Edn. 2008, 19, 275–290. [Google Scholar] [CrossRef]
- Idziak, I.; Avoce, D.; Lessard, D.; Gravel, D.; Zhu, X.X. Thermosensitivity of Aqueous Solutions of Poly(N,N-diethylacrylamide). Macromolecules 1999, 32, 1260–1263. [Google Scholar] [CrossRef]
- Hanykova, L.; Spevacek, J.; Radecki, M.; Zhigunov, A.; Kourilova, H.; Sedlakova, Z. Phase transition in hydrogels of thermoresponsive semi-interpenetrating and interpenetrating networks of poly(N,N-diethylacrylamide) and polyacrylamide. Eur. Polym. J. 2016, 85, 1–13. [Google Scholar] [CrossRef]
- Chen, J.; Liu, M.; Chen, S. Syntheis and characterization of themo- and pH-sensitive kappa-carrageenan-g-poly(methacrylic acid)/poly(N,N-diethylacrylamide) semi-IPN hydrogel. Mater. Chem. Phys. 2009, 115, 339–346. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Ma, J.; Vancso, G.J. Thermoresponsive semi-IPN hydrogel microfibers from continuous fluidic processing with high elasticity and fast actuation. ACS Appl. Mater. Interfaces 2017, 9, 901–908. [Google Scholar] [CrossRef]
- Panayiotou, M.; Freitag, R. Synthesis and characterisation of stimuli-responsive poly(N,N’-diethyl-acrylamide) hydrogels. Polymer 2005, 46, 615–621. [Google Scholar] [CrossRef]
- Wei, W.; Qi, X.; Liu, Y.; Li, J.; Hu, X.; Zuo, G.; Zhang, J. Synthesis and characterization of a novel pH-thermo dual responsive hydrogel based on salecan and poly(N,N-diethylacrylamide-co-methacrylic acid). Colloids Surface B Biointerfaces 2015, 136, 1182–1192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Liu, M.; Shen, Y.; Chen, J.; Dai, L.; Gao, C. Preparation, properties, and drug release of thermo- and pH-sensitive poly((2-dimethylamino)ethyl methacrylate)/poly(N,N-diethylacrylamide) semi-IPN hydrogels. J. Mater. Sci. 2011, 46, 1523–1534. [Google Scholar] [CrossRef]
- Chen, J.; Liu, M.; Liu, H.; Ma, L.; Gao, C.; Zhu, S.; Zhang, S. Synthesis and properties of themo- and pH sensitive poly(diallyldimethylammonium chloride)/poly(N,N-diethylacrylamide) semi-IPN hydrogel. Chem. Eng. J. 2010, 159, 247–256. [Google Scholar] [CrossRef]
- Liu, H.; Liu, M.; Ma, L.; Chen, J. Thermo- and pH-sensitive comb-type grafted poly(N,N-diethylacryl amide-co-acrylic acid) hydrogels with rapid response behaviors. Eur. Polym. J. 2009, 45, 2060–2067. [Google Scholar] [CrossRef]
- Rwei, S.P.; Chuang, Y.Y.; Way, T.F.; Chiang, W.Y.; Hsu, S.P. Preparation of thermo- and pH-responsive star copolymers via ATRP and its use in drug release application. Colloid. Polym. Sci. 2015, 293, 493–503. [Google Scholar] [CrossRef]
- Rwei, S.P.; Shu, K.T.; Way, T.F.; Chang, S.M.; Chiang, W.Y.; Pan, W.C. Synthesis and characterization of hyperbranched copolymers hyper-g-(NIPAAm-co-IAM) via ATRP. Colloid. Polym. Sci. 2016, 294, 291–301. [Google Scholar] [CrossRef]
- Rwei, S.P.; Way, T.F.; Chang, S.M.; Chiang, W.Y.; Lien, Y.Y. Thermo- and pH-responsive copolymers: Poly(N-isopropylacrylamide-co-IAM) copolymers. J. Appl. Polym. Sci. 2015. [Google Scholar] [CrossRef]
- Rwei, S.P.; Anh, T.H.N.; Chiang, W.Y.; Way, T.F.; Hsu, Y.J. Synthesis and drug delivery application of thermo- and pH-sensitive hydrogels: Poly(β-CD-co-N-Isopropylacrylamide-co-IAM). Materials 2016, 9, 1003. [Google Scholar] [CrossRef] [Green Version]
- Rwei, S.P.; Tuan, H.N.A.; Chiang, W.Y.; Way, T.F. Synthesis and characterization of pH and thermo dual-responsive hydrogels with a semi-IPN structure based on N-isopropylacrylamide and itaconamic acid. Materials 2018, 11, 696. [Google Scholar] [CrossRef] [Green Version]
- Way, T.F.; Chen, Y.T.; Chen, J.J.; Teng, K. Copolymer and Method for Manufacturing the Same. US Patent 2013/0172490 A1, 4 July 2013. [Google Scholar]
- Feng, X.D.; Guo, X.Q.; Qiu, K.Y. Study of the initiation mechanism of the vinyl polymerization with the system persulfate/N,N,N’,N’-tetramethylethylenediamine. Makromol. Chem. 1988, 189, 77–83. [Google Scholar] [CrossRef]
- Spevacek, J.; Geschke, D.; Ilavsky, M. 1H NMR study of temperature collapse of linear and crosslinked poly(N,N-diethylacrylamide) in D2O. Polymer 2001, 42, 463–468. [Google Scholar] [CrossRef]
- Liu, D.; Liu, H.; Hu, N. pH-, sugar-, and temperature-sensitive electrochemical switch amplified by enzymatic reaction and controlled by logic gates based on semi-interpenetrating polymer networks. J. Phys. Chem. B 2012, 116, 1700–1708. [Google Scholar] [CrossRef] [PubMed]
- Haye, J.L.D.L.; Costa, A.P.D.; Pembouong, G.; Ruhlmann, L.; Hasenknopf, B.; Lacote, E.; Rieger, J. Stuchendy of the temperature-induced aggregation of polyoxometalate-poly(N,N-diethylacrylamide) hybrids in water. Polymer 2015, 57, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Andre, X.; Zhang, M.; Muller, A.H.E. Thermo- and pH-responsive micelles of poly(acrylic acid)-block-poly(N,N-diethylacrylamide). Macromol. Rapid. Commun. 2005, 26, 558–563. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, X.; Wu, C. comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N-isopropylacrylamide) homopolymer chain in water. Macromolecules 1998, 31, 2972–2976. [Google Scholar] [CrossRef]
- Sousa, R.G.; Magalhaes, W.F.; Freitas, R.F.S. Glass transition and thermal stability of poly(N-isopropylacrylamide) gels and some of their copolymers with acrylamide. Polym. Degrad. Stabil. 1998, 61, 275–281. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, X.; Xiao, H. Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr. Polym. 2013, 94, 749–754. [Google Scholar] [CrossRef]
- Khan, A. Preparation and characterization of N-isopropylacrylamide/acrylic acid copolymer core-shell microgel particles. J. Colloid. Interf. Sci. 2007, 313, 697–704. [Google Scholar] [CrossRef]
- Chen, J.; Liu, M.; Zhang, N.; Dai, P.; Cao, C.; Ma, L.; Liu, H. Influence of the grafted chain length on responsive behaviors of the grafted poly(DEA-co-DMAEMA) hydrogel. Sens. Actuat. B Chem. 2010, 149, 34–43. [Google Scholar] [CrossRef]
- Chavda, H.V.; Patel, C.N. Effect of crosslinker concentration on characteristics of superporous hydrogel. Int. J. Pharm. Investig. 2011, 1, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Xiao, C.; Tan, H.; Hu, X. Covalently crosslinked hyaluronic acid-chitosan hydrogel containing dexamethasone as an injectable scaffold for soft tissue engineering. J. Appl. Polym. Sci. 2013. [Google Scholar] [CrossRef]
- Calvet, D.; Wong, J.Y.; Giasson, S. Rheological monitoring of polyacrylamide gelation: Importance of cross-link density and temperature. Macromolecules 2004, 37, 7762–7771. [Google Scholar] [CrossRef]
- Nie, W.; Yuan, X.; Zhao, J.; Zhou, Y.; Bao, H. Rapidly in situ forming chitosan/ε-polylysine hydrogels for adhesive sealants and hemostatic material. Carbohydr. Polym. 2013, 96, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.J.; Park, J.; Li, C.; Jin, H.J.; Valluzziand, R.; Kaplan, D.L. Structure and properties of silk hydrogels. Biomacromolecules 2004, 5, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Hu, X.; Qi, X.; Yu, H.; Liu, Y.; Li, J.; Zhang, J.; Dong, W. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): Synthesis and characterization. Colloids and Surface B: Bioinertfaces. 2015, 125, 1–11. [Google Scholar] [CrossRef]
- Hu, X.; Feng, L.; Wei, W.; Xie, A.; Zhang, S.; Dong, W. Synthesis and characterization of a novel semi-IPN hydrogel based on Salecan and poly(N,N-dimethylarylamide-co-2-hydroxyethyl methacrylate). Carbohydr. Polym. 2014, 105, 135–144. [Google Scholar] [CrossRef]
- Coronado, R.; Pekerar, S.; Lorenzo, A.T.; Sabino, M.A. Characterization of thermosensitive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid. Polym. Bull. 2011, 67, 101–124. [Google Scholar] [CrossRef]
- Zhang, J.T.; Bhat, R.; Jandt, K.D. Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta. Biomater. 2009, 5, 488–497. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Harzandi, A.M.; Hosseinzadeh, H. Modified carrageenan. 6. Crosslinked graft copolymer of methacrylic acid and kappa-carrageenan as a novel superabsorbent hydrogel with low salt- and high pH-sensitivity. Macromol. Res. 2005, 13, 483–490. [Google Scholar] [CrossRef]
Samples | Linear Copolymer P(DEA-co-IAM), I-2 Solution (mL) a | DEA, (mL) | DI water (mL) | MBA (mg) | APS b Solution (mL) | TEMED c Solution (mL) | Total Volume (mL) |
---|---|---|---|---|---|---|---|
PDEA0 | 0 | 1.50 | 9.0 | 46.0 | 1.5 | 3.0 | 15 |
PDEA1 | 1.5 | 1.35 | 8.0 | 41.0 | 1.4 | 2.8 | 15 |
PDEA2 | 3.0 | 1.20 | 7.2 | 37.0 | 1.2 | 2.4 | 15 |
PDEA3 | 4.5 | 1.05 | 6.2 | 32.0 | 1.1 | 2.2 | 15 |
PDEA4 | 6.0 | 0.90 | 5.4 | 28.0 | 0.9 | 1.8 | 15 |
Samples | Mn × 104, g mol−1 | PDI |
---|---|---|
Linear copolymer P(DEA-co-IAM) | 5.80 | 1.68 |
Linear homopolymer PDEA | 11.5 | 1.68 |
Sample | Compressive Modulus (kPa) | Fracture Strain (%) | Fracture Stress (kPa) | Pore Size (μm) |
---|---|---|---|---|
PDEA0 | 3.4 ± 0.5 | 68.2 ± 2.9 | 24.4 ± 2.0 | 220 ± 77 |
PDEA1 | 1.9 ± 0.3 | 92.3 ± 4.8 | 75.0 ± 3.7 | 238 ± 78 |
PDEA2 | 1.7 ± 0.3 | 93.2 ± 5.2 | 59.3 ± 4.1 | 282 ± 51 |
PDEA3 | 0.6 ± 0.2 | 95.1 ± 4.3 | 43.1 ± 3.2 | 524 ± 59 |
PDEA4 | 0.3 ± 0.1 | 97.9 ± 3.8 | 40.0 ± 2.4 | 715 ± 83 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuan, H.N.A.; Nhu, V.T.T. Synthesis and Properties of pH-Thermo Dual Responsive Semi-IPN Hydrogels Based on N,N’-Diethylacrylamide and Itaconamic Acid. Polymers 2020, 12, 1139. https://doi.org/10.3390/polym12051139
Tuan HNA, Nhu VTT. Synthesis and Properties of pH-Thermo Dual Responsive Semi-IPN Hydrogels Based on N,N’-Diethylacrylamide and Itaconamic Acid. Polymers. 2020; 12(5):1139. https://doi.org/10.3390/polym12051139
Chicago/Turabian StyleTuan, Huynh Nguyen Anh, and Vo Thi Thu Nhu. 2020. "Synthesis and Properties of pH-Thermo Dual Responsive Semi-IPN Hydrogels Based on N,N’-Diethylacrylamide and Itaconamic Acid" Polymers 12, no. 5: 1139. https://doi.org/10.3390/polym12051139
APA StyleTuan, H. N. A., & Nhu, V. T. T. (2020). Synthesis and Properties of pH-Thermo Dual Responsive Semi-IPN Hydrogels Based on N,N’-Diethylacrylamide and Itaconamic Acid. Polymers, 12(5), 1139. https://doi.org/10.3390/polym12051139