An Exploration of Relationships among Thermal Insulation, Area Factor and Air Gap of Male Chinese Ethnic Costumes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clothing Ensembles
2.2. Thermal Manikin
2.3. Three-Dimensional Body Scanner
2.4. Determination of the Air Gap and Clothing Area Factor
2.5. Calculations
2.6. Experimental Protocol and Test Conditions
3. Results
3.1. Thermal Insulation, Clothing Area Factor and Average Air Gap
3.2. Clothing Local Thermal Insulation and Local Air Gap
3.3. Local Intrinsic Thermal Insulation and Local Clothing Area Factor
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Organization for Standardization. Moderate Thermal Environments–Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- International Organization for Standardization. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Heat Stress Using Calculation of the Predicted Heat Strain; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- Havenith, G.; Heus, R.; Lotens, W.A. Resultant clothing insulation: A function of body movement, posture, wind, clothing fit and ensemble thickness. Ergonomics 1990, 33, 67–84. [Google Scholar] [CrossRef]
- Kurazumi, Y.; Tsuchikawa, T.; Yamato, Y.; Sakoi, T.; Bolashikov, Z.D.; Kndo, E.; Fukagawa, K.; Tobita, K.; Matsubara, N.; Horikoshi, T. Measurement of heat transfer coefficients of leg-out sitting and chair sitting human body under forced convection from front and back. J. Hum. Living Environ. 2013, 20, 51–61. [Google Scholar]
- Li, J.; Guo, X.; Wang, Y. Temperature rating prediction of Tibetan robe ensemble based on different wearing ways. Appl. Ergon. 2012, 43, 909–915. [Google Scholar] [CrossRef]
- Luo, N.; Weng, W.; Fu, M.; Yang, J.; Han, Z. Experimental study of the effects of human movement on the convective heat transfer coefficient. Exp. Therm. Fluid Sci. 2014, 57, 40–56. [Google Scholar] [CrossRef]
- Morrissey, M.P.; Rossi, R.M. The effect of wind, body movement and garment adjustments on the effective thermal resistance of clothing with low and high air permeability insulation. Text. Res. J. 2014, 84, 583–592. [Google Scholar] [CrossRef]
- Nielsen, R.; Olesen, B.W.; Fanger, P.O. Effect of physical activity and air velocity on the thermal insulation of clothing. Ergonomics 1985, 28, 1617–1631. [Google Scholar] [CrossRef] [PubMed]
- Olesen, B.W.; Sliwinska, E.; Madsen, T.L.; Fanger, P.O. Effect of body posture and activity on the thermal insulation of clothing: Measurement by a movable thermal manikin. ASHRAE Trans. 1982, 88, 791–805. [Google Scholar]
- Oguro, M.; Arens, E.; de Dear, R.; Zhang, H.; Katayama, T. Evaluation of the effect of air flow on clothing insulation and total heat transfer coefficient for each part of the clothed human body. J. Arch. Plan. Environ. Eng. (AIJ) 2001, 549, 13–21. [Google Scholar]
- Vogt, J.J.; Meyer, J.P.; Candas, V.; Libert, L.P.; Sagot, J.C. Pumping effect on thermal insulation of clothing worn by human subjects. Ergonomics 1983, 26, 963–974. [Google Scholar] [CrossRef]
- Lu, Y.; Song, G.; Li, J.; Wang, F. The impact of air gap on thermal performance of protective clothing against hot water spray. Text. Res. J. 2015, 85, 709–721. [Google Scholar] [CrossRef]
- Sung, S.K. Study on the thermal insulation effect of Korean men’s folk clothes. J. Therm. Biol. 1993, 18, 409–412. [Google Scholar] [CrossRef]
- Lee, Y.; Hong, K.; Hong, S.A. 3D Quantification of microclimate volume in layered clothing for the prediction of clothing insulation. Appl. Ergon. 2007, 38, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fan, J.; Qian, X.; Zhang, W. Effect of garment fit on thermal insulation and evaporative resistance. Text. Res. J. 2004, 74, 742–748. [Google Scholar] [CrossRef]
- He, S.; Huang, D.; Qi, Z.; Yang, H.; Hu, Y.; Zhang, H. The effect of air gap thickness on heat transfer in firefighters’ protective clothing under conditions of short exposure to heat. Heat Transf. Res. 2011, 43, 749–765. [Google Scholar] [CrossRef]
- Kim, I.Y.; Lee, C.; Li, P.; Corner, B.D.; Paquette, S. Investigation of air gaps entrapped in protective clothing systems. Fire Mater. 2002, 26, 121–126. [Google Scholar] [CrossRef]
- Song, G. Clothing Air gap layers and thermal resistance performance in single layer garment. J. Ind. Text. 2007, 36, 193–205. [Google Scholar] [CrossRef]
- Lu, Y.; Song, G.; Li, J. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning. Appl. Ergon. 2014, 45, 1439–1446. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Wang, Y. The relationship between air gap sizes and clothing heat transfer performance. J. Text. Inst. 2013, 104, 1327–1336. [Google Scholar] [CrossRef]
- Al-ajmi, F.F.; Loveday, D.L.; Bedwell, K.H.; Havenith, G. Thermal insulation and clothing area factors of typical Arabian gulf clothing ensembles for males and females: Measurements using thermal manikins. Appl. Ergon. 2011, 39, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Havenith, G.; Kuklane, K.; Fan, J.; Hodder, S.; Ouzzahra, Y.; Lundgren, K.; Au, Y.; Loveday, D. A database of static clothing thermal insulation and vapor permeability values of non-Western ensembles for use in ASHRAE Standard 55, ISO 7730, and ISO 9920 CH-15-018 (RP-1504). ASHRAE Trans. 2015, 121, 197–215. [Google Scholar]
- American Society of Heating, Refrigerating and Air-Conditioning Engineers. Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Peachtree Corners, GA, USA, 2013. [Google Scholar]
- International Organization for Standardization. Ergonomics of the Thermal Environment–Estimation of the Thermal Insulation and Evaporative Resistance of a Clothing Ensemble; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- Lu, Y.; Wang, F.; Wan, X.; Song, G.; Shi, W.; Zhang, C. Clothing resultant thermal insulation determined on a movable thermal manikin. Part I: Effects of wind and body movement on total resultant insulation. Int. J. Biometeorol. 2015, 59, 1475–1486. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. Clothing–Physiological Effects–Measurement of Thermal Insulation by Means of a Thermal Manikin; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- McCullough, E.A.; Jones, B.W.; Huck, J. A comprehensive data base for estimating clothing insulation. ASHRAE Trans. 1985, 91, 29–47. [Google Scholar]
- Mecheels, J.H.; Umbach, K.H. The psychrometric range of clothing systems. In Clothing Comfort: Interaction of Thermal, Ventilation, Construction and Assessment Factors; Hollies, N.R.S., Goldman, R.F., Eds.; Ann Arbor Science Publishers: Ann Arbor, CA, USA, 1997; pp. 133–151. [Google Scholar]
- Daanen, H.; Hatcher, K.; Havenith, G. Determination of clothing microclimate volume. In Environmental Ergonomics; Tochihara, Y., Ohnaka, T., Eds.; Elsevier Ltd.: Oxford, UK, 2005; pp. 361–365. [Google Scholar]
- Psikuta, A.; Frackiewicz-Kaczmarek, J.; Frydrych, I.; Rossi, R. Quantitative evaluation of air gap thickness and contact area between body and garment. Text. Res. J. 2012, 82, 1405–1413. [Google Scholar] [CrossRef]
Groups | Costume | Components | Materials | Fabric Thickness (mm) | Weight (g) |
---|---|---|---|---|---|
G1 | Li | Short gown | 100% polyester | 0.58 | 512.2 |
Short dress | 100% polyester | 0.51 | |||
Russian | Short sleeve shirt | 100% rayon | 0.25 | 477.6 | |
Trousers | 100% polyester | 0.58 | |||
Dai | Short sleeve shirt, trousers | 100% rayon | 0.36 | 499.8 | |
G2 | Hezhe | Robe | 100% polyester | 1.62 | 395.8 |
Nu | Robe | 55% flax, 45% cotton | 0.64 | 673.6 | |
Oroqen | Robe | 100% polyester | 0.81 | 743.6 | |
Mongolian | Robe | 100% polyester | 0.61 | 773.6 | |
Tibetan | Robe | 100% polyester | 0.38 | 1297.8 | |
G3 | Zhuang | Short gown, trousers | 100% polyester | 0.29 | 486.2 |
Tajik | Short gown, trousers | 100% polyester | 0.60 | 992.0 | |
Pumi | Short gown | 100% polyester | 0.86 | 812.0 | |
Trousers | 100% polyester | 0.55 | |||
Va | Short gown | 100% polyester | 0.64 | 657.4 | |
Long dress | 78% polyester, 18% rayon, 4% spandex | 0.73 | |||
Jino | Short gown, trousers | 100% polyester | 0.56 | 670.4 | |
Sui | Short gown, trousers | 100% polyester | 0.70 | 761.4 | |
Gelao | Short gown | 65% polyester, 35% flax | 0.26 | 470.6 | |
Trousers | 100% polyester | 0.44 | |||
She | Short gown, trousers | 96% polyester, 4% spandex | 0.82 | 786.0 | |
Bouyei | Short gown | 65% polyester, 35% flax | 0.72 | 1180.0 | |
Long dress (up) | 100% polyester | 0.50 | |||
Long dress (down) | 100% polyester | 0.31 | |||
G4 | Bai | Short gown, trousers | 96% polyester, 4% spandex | 0.26 | 545.0 |
Waistcoat | 100% polyester | 1.73 | |||
Dongxiang | Short shirt, trousers | 100% polyester | 0.59 | 845.0 | |
Waistcoat | 98% polyester, 2% spandex | 0.63 | |||
Yao | Long shirt, apron, trousers | 100% polyester | 0.64 | 997.8 | |
Dong | Short gown | 96% polyester, 4% spandex | 0.28 | 928.8 | |
Waistcoat, trousers | 98% polyester, 2% spandex | 0.63 | |||
Nakhi | Trousers | 65% polyester, 31% rayon, 4% spandex | 0.50 | 806.4 | |
Short gown | 100% polyester | 0.61 | |||
Waistcoat | 100% polyester | 0.58 | |||
Hani | Short gown | 54% polyester, 33%cotton, 13% polyamide | 0.31 | 994.0 | |
Waistcoat, apron, trousers | 98% polyester, 2% spandex | 0.73 | |||
Hui | Long shirt, trousers | 100% polyester | 0.62 | 975.6 | |
Waistcoat | 100% polyester | 0.66 | |||
Uyghur | Short gown, trousers | 96% polyester, 4% spandex | 0.30 | 732.4 | |
Long waistcoat | 10% polyester, 85% cotton, 5% flax | 0.70 | |||
Miao | Robe | 50% polyester, 50% polyamide | 0.43 | 934.6 | |
Waistcoat, trousers | 98% polyester, 2% spandex | 0.63 | |||
G5 | Daur | Robe | 96% polyester, 4% spandex | 0.85 | 1066.0 |
Trousers | 96% polyester, 4% spandex | 0.60 | |||
Mulao | Robe | 100% rayon | 0.48 | 669.8 | |
Trousers | 100% polyester | 0.30 | |||
Xibe | Robe, trousers | 96% polyester, 4% spandex | 0.81 | 1213.6 | |
Manchu | Robe | 100% rayon | 0.47 | 887.8 | |
Trousers | 100% polyester | 0.44 | |||
Uzbek | Robe | 10% polyester, 85% cotton, 5% flax | 1.19 | 1120.4 | |
Short shirt | 100% rayon | 0.22 | |||
Trousers | 98% polyester, 2% spandex | 0.57 | |||
Kazakh | Short shirt | 100% polyester | 0.60 | 1153.6 | |
Robe, trousers | 100% polyester | 0.63 | |||
Derung | Robe, trousers | 100% polyester | 0.55 | 1262.0 | |
Short shirt | 100% polyester | 0.60 | |||
Tujia | Short shirt | 55% flax, 45% cotton | 0.60 | 924.4 | |
Short gown, trousers | 98% cotton, 2% spandex | 0.52 | |||
G6 | Tu | Trousers | 100% polyester | 0.62 | 1506 |
Short shirt, short gown, waistcoat | 98% cotton, 2% spandex | 0.63 | |||
Yi | Short gown, dress smock | 100% polyester | 0.537 | 903.0 | |
Trousers | 96% polyester, 4% spandex | 0.133 | |||
Bonan | Long shirt, robe, trousers | 100% polyester | 0.59 | 1748.6 | |
Qiang | Robe | 96% polyester, 4% spandex | 0.84 | 1788.8 | |
Fur waistcoat | 96% polyester, 4% spandex | 5.09 | |||
Trousers | 62% rayon, 38% polyester | 0.65 |
Groups | Costume | Vcl (dm3) | dair (mm) | fcl | It (clo) | Icl (clo) |
---|---|---|---|---|---|---|
G1 | Li | 22.99 | 15.00 | 1.11 | 0.81 | 0.35 |
Russian | 27.98 | 16.23 | 1.18 | 0.86 | 0.44 | |
Dai | 24.41 | 17.42 | 1.22 | 0.92 | 0.51 | |
G2 | Hezhe | 33.21 | 21.67 | 1.22 | 0.91 | 0.50 |
Nu | 42.07 | 25.92 | 1.34 | 0.94 | 0.56 | |
Oroqen | 44.30 | 30.05 | 1.31 | 0.95 | 0.56 | |
Mongolian | 46.00 | 29.05 | 1.30 | 1.04 | 0.65 | |
Tibetan | 93.06 | 51.39 | 1.70 | 1.17 | 0.88 | |
G3 | Zhuang | 26.19 | 16.99 | 1.23 | 0.99 | 0.59 |
Tajik | 30.76 | 19.60 | 1.21 | 0.99 | 0.58 | |
Pumi | 30.30 | 17.19 | 1.25 | 1.01 | 0.61 | |
Va | 49.43 | 27.08 | 1.22 | 1.01 | 0.60 | |
Jino | 28.06 | 16.27 | 1.23 | 1.03 | 0.62 | |
Sui | 33.61 | 18.90 | 1.24 | 1.05 | 0.64 | |
Gelao | 28.93 | 17.79 | 1.24 | 1.01 | 0.61 | |
She | 20.07 | 12.67 | 1.14 | 1.05 | 0.61 | |
Bouyei | 84.67 | 46.54 | 1.67 | 1.10 | 0.80 | |
G4 | Bai | 27.95 | 15.53 | 1.19 | 1.05 | 0.63 |
Dongxiang | 31.07 | 18.15 | 1.24 | 1.07 | 0.67 | |
Yao | 32.29 | 18.62 | 1.24 | 1.08 | 0.68 | |
Dong | 33.60 | 19.64 | 1.15 | 1.10 | 0.66 | |
Nakhi | 34.83 | 19.70 | 1.27 | 1.11 | 0.71 | |
Hani | 36.37 | 20.53 | 1.23 | 1.17 | 0.76 | |
Hui | 38.52 | 20.84 | 1.24 | 1.09 | 0.68 | |
Uyghur | 30.02 | 16.79 | 1.19 | 1.10 | 0.67 | |
Miao | 50.18 | 27.41 | 1.23 | 1.23 | 0.82 | |
G5 | Daur | 32.70 | 18.61 | 1.22 | 1.06 | 0.65 |
Mulao | 33.57 | 19.45 | 1.27 | 1.13 | 0.73 | |
Xibe | 64.02 | 35.60 | 1.38 | 1.13 | 0.77 | |
Manchu | 60.16 | 34.63 | 1.42 | 1.16 | 0.81 | |
Uzbek | 35.85 | 19.47 | 1.15 | 1.18 | 0.74 | |
Kazazh | 39.89 | 20.56 | 1.19 | 1.21 | 0.79 | |
Drung | 47.83 | 27.08 | 1.31 | 1.25 | 0.86 | |
Tujia | 35.19 | 20.58 | 1.24 | 1.19 | 0.78 | |
G6 | Tu | 45.72 | 25.20 | 1.25 | 1.26 | 0.86 |
Yi | 74.20 | 51.40 | 1.35 | 1.28 | 0.91 | |
Bonan1 | 71.39 | 39.55 | 1.65 | 1.33 | 1.02 | |
Bonan2 | 65.07 | 40.43 | 1.65 | 1.48 | 1.18 | |
Qiang | 54.99 | 29.03 | 1.31 | 1.36 | 0.98 |
Body Part | a | b | R2 | Turning Point | |
---|---|---|---|---|---|
Arms | −0.0007 | 0.0615 | 0.490 | 0.55 | 43.9 |
Chest | −0.0087 | 0.251 | 0.504 | 0.70 | 14.4 |
Shoulder | −0.0204 | 0.287 | 0.632 | 0.54 | 7.0 |
Abdomen | −0.0041 | 0.188 | 0.497 | 0.34 | 22.9 |
Back | −0.003 | 0.158 | 0.575 | 0.39 | 26.3 |
Pelvis | −0.008 | 0.28 | 0.537 | 0.16 | 17.9 |
Thigh | −0.0014 | 0.1 | 0.452 | 0.30 | 35.7 |
Lower leg | −0.0004 | 0.0326 | 0.480 | 0.21 | 40.8 |
Body Part | a | R2 |
---|---|---|
Arms | 0.370 | 0.47 |
Chest | 0.063 | 0.50 |
Shoulder | 0.044 | 0.18 |
Abdomen | 0.124 | 0.44 |
Back | 0.161 | 0.39 |
Pelvis | 0.048 | 0.20 |
Thigh | 0.119 | 0.04 |
Lower leg | 0.84 | 0.24 |
Body Part | a | b | R2 | ||
---|---|---|---|---|---|
Abdomen | No belt | −0.0009 | 0.139 | 0.497 | 0.45 |
With belt | −0.0127 | 0.278 | 0.497 | 0.60 | |
Back | No belt | 0 | 0.104 | 0.575 | 0.44 |
With belt | −0.0068 | 0.2203 | 0.575 | 0.73 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, Y.; Wang, F. An Exploration of Relationships among Thermal Insulation, Area Factor and Air Gap of Male Chinese Ethnic Costumes. Polymers 2020, 12, 1302. https://doi.org/10.3390/polym12061302
Ke Y, Wang F. An Exploration of Relationships among Thermal Insulation, Area Factor and Air Gap of Male Chinese Ethnic Costumes. Polymers. 2020; 12(6):1302. https://doi.org/10.3390/polym12061302
Chicago/Turabian StyleKe, Ying, and Faming Wang. 2020. "An Exploration of Relationships among Thermal Insulation, Area Factor and Air Gap of Male Chinese Ethnic Costumes" Polymers 12, no. 6: 1302. https://doi.org/10.3390/polym12061302
APA StyleKe, Y., & Wang, F. (2020). An Exploration of Relationships among Thermal Insulation, Area Factor and Air Gap of Male Chinese Ethnic Costumes. Polymers, 12(6), 1302. https://doi.org/10.3390/polym12061302