Preparation and Characterization of Zinc Hydroxystannate Coated by Aluminum Phosphate and Its Application in Poly(acrylonitrile-co-vinylidene chloride)
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods
2.2.1. Preparation of ZHS Composites Coated by ALP (ALP-ZHS Composite)
2.2.2. Preparation of PANVDC Polymer-added ALP-ZHS Composite
2.2.3. Characterization
3. Results and Discussion
3.1. Preparation of ALP-ZHS Composite
3.2. Characterization of the PANVDC/ALP-ZHS
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gao, T.T.; Li, Z.W.; Yu, L.G.; Zhang, Z.J. Preparation of zince hydroxystannate nanocomposites coated by organnophosphorus and investigation of their effect on mechanical properties and flame retardancy of poly (vinyl chloride). RSC. Adv. 2015, 5, 99291–99298. [Google Scholar] [CrossRef]
- Zhang, B.; Han, J. Morphology control of zinc hydroxystannate microcapsules by sol–gel method and their enhanced flame retardancy properties for polyvinyl chloride composites. J. Sol-Gel Sci. Technol. 2016, 81, 442–451. [Google Scholar] [CrossRef]
- Han, L.; Liu, J.; Wang, Z.; Zhang, K.; Luo, H.; Xu, B.; Zou, X.; Zheng, X.; Ye, B.; Yu, X. Shape-controlled synthesis of ZnSn(OH)6 crystallites and their HCHO-sensing properties. CrystEngComm 2012, 14, 3380–3386. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Han, J. Synthesis of zinc hydroxystannate microcapsule for improving flame retardancy and smoke suppression of poly(lactic acid). Mater. Lett. 2018, 213, 35–39. [Google Scholar] [CrossRef]
- Ge, H.; Tang, G.; Hu, W.Z.; Wang, B.B.; Pan, Y.; Song, L.; Hu, Y. Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6. J. Hazard. Mater. 2015, 294, 186–194. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, C.; Qu, H.; Tian, C. Zinc hydroxystannate and zinc stannate as flame-retardant agents for flexible poly(vinyl chloride). J. Appl. Polym. Sci. 2005, 98, 1469–1475. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, Y.; Han, J. The core-double-shell microcapsules flame retardant: Synthesis and its application for polyvinyl chloride composites. J. Phys. Chem. Solid 2017, 111, 391–402. [Google Scholar] [CrossRef]
- Tanaka, T.; Terakado, O.; Hirasawa, M. Flame retardancy in fabric consisting of cellulosic fiber and modacrylic fiber containing fine-grained MoO3 particles. Fire Mater. 2016, 40, 612–621. [Google Scholar] [CrossRef]
- Kim, H.A.; Kim, S.J. Flame-Retardant and Wear Comfort Properties of Modacrylic/FR-Rayon/Anti-static PET Blend Yarns and Their Woven Fabrics for Clothing. Fiber Polym. 2018, 19, 1869–1879. [Google Scholar] [CrossRef]
- Jain, A.K.; Tesema, A.F.; Haile, A. Development of shrink resistance cotton using fluorocarbon. Fash. Text. 2019, 6, 1. [Google Scholar] [CrossRef]
- Kaspersma, J.; Doumen, C.; Munro, S.; Prins, A.M. Fire retardant mechanism of aliphativc bromine compounds in polystyrene and polypropylene. Polym. Degrad. Stab. 2002, 77, 325–331. [Google Scholar] [CrossRef]
- Lee, S.H.; Yi, G.R.; Yim, D.Y.; Jeong, W.Y.; Youk, J.H. Study on the Flame Retardant and Mechanical Properties of Wet-spun Poly(acrylonitrile-co-vinylchloride) Fibers with Antimony Trioxide and Zinc Hydroxystannate. Fiber Polym. 2019, 20, 779–786. [Google Scholar] [CrossRef]
- Yang, L.; Shi, C.L. Effect of Zinc Hydroxystannate Coated M-HOS Whisker on Flame Retardant Properties of Flexible PVC. Procedia Eng. 2018, 211, 901–905. [Google Scholar] [CrossRef]
- ASTM D2863-19, Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index); ASTM International: West Conshohocken, PA, USA, 2019.
- Khanna, S.; Sharm, S.; Chakraborty, J.N. Performance assessment of fragrance finished cotton with cyclodextrin assisted anchoring hosts. Fash. Text. 2015, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- ASTM D7309-19a, Standard Test Method for Determining Flammability Characteristics of Plastics and Other Solid Materials Using Microscale Combustion Calorimetry; ASTM International: West Conshohocken, PA, USA, 2019.
- De Fenzo, A.; Formicola, C.; Antonucci, V.; Zarrelli, M.; Giordano, M. Effects of zinc-based flame retardants on the degradation behaviour of an aerospace epoxy matrix. J. Polym. Degrad. Stab. 2009, 94, 1354–1363. [Google Scholar] [CrossRef]
- Yang, L.; Hu, Y.; You, F.; Chen, Z. A novel method to prepare zinc hydroxystannate-coated inorganic fillers and its effect on the fire properties of PVC cable materials. Polym. Eng. Sci. 2007, 47, 1163–1169. [Google Scholar] [CrossRef]
- Gao, T.; Chen, L.; Li, Z.; Yu, L.; Wu, Z.; Zhang, Z. Preparation of zinc hydroxystannate-decorated graphene oxide nanohybrids and their synergistic reinforcement on reducing fire hazards of flexible poly (vinyl chloride). Nanoscale Res. Lett. Title 2016, 11, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; Chikazawa, M. Modification of amorphous aluminum phosphate with alkyl phosphates. Mater. Res. Bull. 2000, 35, 75–84. [Google Scholar] [CrossRef]
- Qian, X.; Song, L.; Yuan, B.; Yu, B.; Shi, Y.; Hu, Y.; Yuen, R.K.K. Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: Preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system. Mater. Chem. Phys. 2014, 143, 1243–1252. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, B.; Han, J. Flame retardancy and smoke suppression properties of flexible polyurethane foams containing an aluminum phosphate microcapsule. RSC. Adv. 2017, 56, 35320–335329. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.H.; Choi, H.W.; Lee, S.H.; Kim, G.H.; Jeong, W.Y.; Lim, D.Y.; Youk, J.H. Polymerization and Wet-spinning of Flame Retardant Poly(acrylonitrile-co-vinylidene chloride) Copolymers: Effect of Vinylidene Chloride Content. Polym. Korea 2018, 42, 1077–1084. [Google Scholar] [CrossRef]
- Lagno, F.; Demopoulos, G.P. Synthesis of Hydrated Aluminum Phosphate, AlPO4·1.5H2O (AlPO4−H3), by Controlled Reactive Crystallization in Sulfate Media. Ind. Eng. Chem. Res. 2005, 44, 8033–8038. [Google Scholar] [CrossRef]
- Luo, F.; Wu, K.; Lu, M.; Nie, S.; Li, X.; Guan, X. Thermal degradation and flame retardancy of microencapsulated ammonium polyphosphate in rigid polyurethane foam. J. Therm. Anal. Calorim. 2015, 120, 1327–1335. [Google Scholar] [CrossRef]
- Chang, S.; Xie, T.; Yang, G. Structures and properties of wet spun thermo-regulated polyacrylonitrile–vinylidene chloride fibers. Polym. Degrad. Stab. 2006, 91, 351–359. [Google Scholar]
- Qu, T.G.; Yang, N.; Hou, J.; Li, G.H.; Yao, Y.M.; Zhang, Q.X.; He, L.Q.; Wu, D.Z.; Qu, X.W. Flame retarding epoxy composites with poly(phosphazene-co-bisphenol A)-coated boron nitride to improve thermal conductivity and thermal stability. RSC. Adv. 2017, 7, 6140–6151. [Google Scholar] [CrossRef] [Green Version]
- Lai, X.; Tang, S.; Li, H.; Zeng, X. Flame-retardant mechanism of a novel polymeric intumescent flame retardant containing caged bicyclic phosphate for polypropylene. Polym. Degrad. Stab. 2015, 113, 22–31. [Google Scholar] [CrossRef]
- Shartel, B. Phosphorus-based flame retardancy mechanisms-old hat or starting point for future development? Materials 2010, 3, 4710–4745. [Google Scholar] [CrossRef] [Green Version]
Characteristics | PANVDC | PANVDC-ZHS | ALP Molar Ratio | ||
---|---|---|---|---|---|
1:5 | 1:1 | 2:1 | |||
WCA (°) | 72 ± 0.3 | 36 ± 1.5 | 75 ± 0.8 | 82 ± 0.5 | 69 ± 1.3 |
Characteristics | PANVDC | PANVDC-ZHS | PANVDC/ALP-ZHS (1:5) | PANVDC/ALP-ZHS (1:1) | PANVDC/ALP-ZHS (2:1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Burning time (sec.) | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | |
8.2 ± 0.3 | 4.7 ± 0.1 | 2.19 ± 0.2 | - | 0 | - | 0 | - | 0 | - | ||
Rating | V-2 | V-0 | V-0 | V-0 | V-0 | ||||||
UL94 test |
Samples | Td (°C) | Tmax1 (°C) | Tmax2 (°C) | Residue (wt. %) |
---|---|---|---|---|
PANVDC | 210 | 302 | 450 | 43 |
PANVDC-ZHS | 190 | 305 | 505 | 51 |
PANVDC/ALP-ZHS (1:1) | 190 | 305 | 510 | 56 |
Samples | PHRR (w/g) | TPHRR (°C) | THR (KJ/g) | HRC (J/g·K) | LOI (%) |
---|---|---|---|---|---|
PANVDC | 167 | 711 | 13 | 172 | 24 |
ZHS-PANVDC | 142 | 684 | 14 | 149 | 33 |
PANVDC/ALP-ZHS (1:1) | 96 | 734 | 12 | 114 | 33.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.E.; Kim, J.S.; Lim, D.; Jeong, W. Preparation and Characterization of Zinc Hydroxystannate Coated by Aluminum Phosphate and Its Application in Poly(acrylonitrile-co-vinylidene chloride). Polymers 2020, 12, 1365. https://doi.org/10.3390/polym12061365
Song JE, Kim JS, Lim D, Jeong W. Preparation and Characterization of Zinc Hydroxystannate Coated by Aluminum Phosphate and Its Application in Poly(acrylonitrile-co-vinylidene chloride). Polymers. 2020; 12(6):1365. https://doi.org/10.3390/polym12061365
Chicago/Turabian StyleSong, Ji Eun, Ji Su Kim, Daeyoung Lim, and Wonyoung Jeong. 2020. "Preparation and Characterization of Zinc Hydroxystannate Coated by Aluminum Phosphate and Its Application in Poly(acrylonitrile-co-vinylidene chloride)" Polymers 12, no. 6: 1365. https://doi.org/10.3390/polym12061365
APA StyleSong, J. E., Kim, J. S., Lim, D., & Jeong, W. (2020). Preparation and Characterization of Zinc Hydroxystannate Coated by Aluminum Phosphate and Its Application in Poly(acrylonitrile-co-vinylidene chloride). Polymers, 12(6), 1365. https://doi.org/10.3390/polym12061365