Mechanical and Rheological Behaviour of Composites Reinforced with Natural Fibres
Abstract
:1. Introduction
2. Materials
2.1. Natural Fibre Composites
2.1.1. Wood Particle Reinforced Composite (WPC)
2.1.2. Hemp Mat Reinforced Composites
2.1.3. Flax Reinforced Composites
2.2. Experimental Set-Up
2.2.1. Tensile Test
2.2.2. Dynamic Mechanical Analysis
3. Results and Discussion
3.1. Dynamic Mechanical Analysis
3.1.1. Isothermal Conditions
3.1.2. Temperature Variation
3.2. Fracture Analysing
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations and Notations
WPC | wood particle reinforced composites; |
HMP | hemp mat and polyurethane resin; |
FWPC | flax and wood particle reinforced composites; |
DMA | dynamic mechanical analysis; |
L | length of sample; |
b | width of sample; |
h | thickness of sample; |
l | gauge length between bearings for 3 points bending; |
E | longitudinal elasticity modulus; |
STDV | standard deviation; |
σr | tensile rupture; |
εr | percentage strain at break; |
k | stiffness; |
E’ | storage modulus; |
E’’ | loss modulus; |
tan δ | damping ratio; |
References
- Di Bela, G.; Fiore, V.; Valenza, A. Natural Fibre Reinforced Composites (Chapter 2). In Fiber Reinforced Composites; Cheng, Q., Ed.; Nova Science Publishers: New York, NY, USA, 2012. [Google Scholar]
- Pamuk, G. Natural fibers reinforced green composites. Tekstilec 2016, 59, 237–243. [Google Scholar] [CrossRef]
- Hristov, V.; Vasileva, S. Dynamic mechanical and thermal properties of modified poly (propylene) wood fiber composites. Macromol. Mater. Eng. 2003, 288, 798–806. [Google Scholar] [CrossRef]
- Puglia, D.; Biagiotti, J.; Kenny, J.M. A review on natural fibre-based composites—Part II. J. Nat. Fibers 2005, 1, 23–65. [Google Scholar] [CrossRef]
- Fajrin, J. Mechanical properties of natural fiber composite made of Indonesian grown sisal. Infoteknik 2016, 17, 69–84. [Google Scholar]
- Terciu, O.M.; Curtu, I.; Teodorescu-Draghicescu, H. Effect of wood particle size on tensile strength in case of polymeric composites. In Proceedings of the 8th International Conference of DAAAM Baltic, Industrial Engineering, Tallinn, Estonia, 19–21 April 2012. [Google Scholar]
- Stark, N.M.; Berger, M.J. Effect of particle size on properties of wood-flour reinforced polypropylene composites. In Proceedings of the Fourth International Conference on Woodfiber-Plastic Composites, Madison, Wisconsin, 12–14 May 1997. [Google Scholar]
- Gozdecki, C.; Wilczynski, A. Effect of wood particle size and test specimen size on mechanical and water resistance properties of injected wood-high density polyethylene composite. Wood Fiber Sci. 2015, 47, 365–374. [Google Scholar]
- Lilholt, H.; Sørensen, B.F. Interfaces between a fibre and its matrix. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 219, p. 012030. [Google Scholar] [CrossRef] [Green Version]
- Stanciu, M.D.; Curtu, I.; Groza, M.; Savin, A. The evaluation of rheological properties of composites reinforced with hemp subjected to photo and thermal degradation. In CONAT 2016 International Congress of Automotive and Transport Engineering; Chiru, A., Ispas, N., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Pickering, K.L.; AruanEfendy, M.G.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Terciu, O.M.; Curtu, I. New hybrid lignocellulosic composite made of epoxy resin reinforced with flax fibres and wood sawdust. Mater. Plast. 2012, 49, 114–117. [Google Scholar]
- Patel, V.K.; Rawat, N. Physico-mechanical properties of sustainable Sagwan-Teak Wood Flour/Polyester Composites with/without gum rosin. Sustain. Mater. Technol. 2017, 13, 1–8. [Google Scholar] [CrossRef]
- Stanciu, M.D.; Bucur, V.; Valcea, C.S.; Savin, A.; Sturm, R. Oak particles size effects on viscous-elastic properties of wood polyester resin composite submitted to ultraviolet radiation. Wood Sci. Technol. 2018, 52, 365–382. [Google Scholar] [CrossRef]
- Cerbu, C.; Curtu, I.; Ciofoaia, V.; Rosca, I.C.; Hanganu, L.C. Effects of the wood species on the mechanical characteristics in case of some e-glass fibres/wood flour/polyester composite materials. Mater. Plast. 2010, 47, 109–114. [Google Scholar]
- Cerbu, C.; Cosereanu, C. Moisture effects on the mechanical behaviour of Fir Wood Flour/Glass reinforced epoxy composite. BioResources 2016, 11, 8364–8385. [Google Scholar] [CrossRef] [Green Version]
- Araújo, E.M.; Araújo, K.D.; Pereira, O.D.; Ribeiro, P.C.; de Melo, T.J. Fiberglass Wastes/Polyester resin composites: Mechanical properties and water sorption. Polímeros Ciência e Tecnologia 2006, 16, 332–335. [Google Scholar]
- Sinha, A.; Narang, H.K.; Bhattacharya, S. Mechanical properties of natural fibre polymer composites. J. Polym. Eng. 2017, 37, 879–895. [Google Scholar] [CrossRef]
- Tang, H.; Nguyen, T.; Chuang, T.; Chin, J.; Lesko, J.; Wu, F. Fatigue model for fiber-reinforced polymeric composite. J. Mater. Civil. Eng. 2000, 12, 97–104. [Google Scholar] [CrossRef]
- Torabizadeh, M.A. Tensile, compressive and shear properties of unidirectional glass/epoxy composite subjected to mechanical loading and low temperature services. Indian J. Eng. Mater. Sci. 2013, 20, 299–309. [Google Scholar]
- Degrieck, J.; Van Paepegem, W. Fatigue damage modelling of fibre-reinforced composite materials: Review. Appl. Mech. Rev. 2001, 54, 279–300. [Google Scholar] [CrossRef]
- Pepper, T. Polyester Resin. Engineering Materials Handbook. Available online: http://home.engineering.iastate.edu/~mkessler/MatE454/Constituent%20Materials%20Chapters%20from%20ASM%20Handbook/%285%29%20Polyester%20Resins.pdf (accessed on 10 October 2016).
- Aramide, F.O.; Atanda, P.O.; Olorunniwo, O.O. Mechanical properties of a polyester fibre glass composite. Int. J. Comp. Mater. 2012, 2, 147–151. [Google Scholar]
- Cerbu, C. Practical solution for improving the mechanical behaviour of the composite materials reinforced with flax woven fabric. Adv. Mech. Eng. 2015, 74, 1687814015582084. [Google Scholar] [CrossRef]
- Prasad, A.V.R.; Rao, K.M. Mechanical properties of natural fibre reinforcedpolyester composites: Jowar, sisal and bamboo. Mater. Des. 2011, 32, 4658–4663. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr. Polym. 2014, 109, 102–117. [Google Scholar] [CrossRef]
- Ndiaye, D.; Diop, B.; Thiandoume, C.; Fall, P.A.; Farota, A.K.; Tidjani, A. Morphology and thermo mechanical properties of wood/polypropylene composites. In Polypropylene; INTECH: London, UK, 2012. [Google Scholar]
- Ndiaye, D.; Verney, V.; Askanaian, H.; Commereuc, S.; Tidjani, A. Morphology, thermal behaviour and dynamic rheological properties of wood polypropylene composites. Mater. Sci. Appl. 2013, 4, 730–738. [Google Scholar]
- Wambua, P.; Ivens, J.; Verpoest, I. Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- Herrera, F.P.J.; Gonzalez, A. A study of the mechanical properties of shortnatural-fiber reinforced composites. Compos. Part B 2005, 36, 597–608. [Google Scholar] [CrossRef]
- Gassan, J.; Bledzki, A.K. Possibilities to improve the properties of natural fiber reinforced plastics by fiber modification–jute polypropylene composites. Appl. Comp. Mater. 2000, 7, 373–385. [Google Scholar] [CrossRef]
- Espert, A.; Camacho, W.; Karlsson, S. Thermal and thermomechanical properties of biocomposites made from modified cellulose and recycled polypropylene. J. Appl. Polym. Sci. 2003, 89, 2350–2353. [Google Scholar] [CrossRef]
- Seldén, R.; Nyström, B.; Långström, R. UV Aging of Poly(propylene)/Wood-Fiber composites. Polym. Compos. 2004, 25, 543–553. [Google Scholar]
- Gupta, M.K.; Bharti, A. Natural fiber reinforced polymercomposites: A review on dynamic mechanical properties. Curr. Trends Fash. Technol. Text. Eng. 2017, 1, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ashok, R.B.; Srinivasa, C.V.; Basavaraju, B. Dynamic mechanical properties of natural fiber composites—A review. Adv. Compos. Hybrid Mater. 2019, 2, 586–607. [Google Scholar] [CrossRef]
- Jiang, X.; Gao, Q. Stress-transfer analysis for fibre/matrix interfaces in short-fibre-reinforced composites. Compos. Sci. Technol. 2001, 61, 1359–1366. [Google Scholar] [CrossRef]
- Teacă, C.A.; Roșu, D.; Bodîrlău, R.; Rosu, L. Structural changes in wood under artificial UV light irradiation determined by FTIR spectroscopy and color measurements—A brief review. BioResources 2013, 8, 1478–1507. [Google Scholar] [CrossRef]
- Cosnita, M.; Cazan, C.; Duta, A. The influence of inorganic additive on the water stability and mechanical properties of recycled rubber, polyethylene terephthalate, high density polyethylene and wood composites. J. Clean. Prod. 2017, 165, 630–636. [Google Scholar] [CrossRef]
- Mbarek, T.B.; Robert, L.; Hugot, F.; Orteu, J.J.; Sammouda, H.; Graciaa, A.; Charrier, B. Study of Wood Plastic Composites elastic behaviour using full field measurements. In Proceedings of the EPJ Web of Conferences, Poitiers, France, 4–9 July 2010; Volume 6, p. 28005. [Google Scholar] [CrossRef] [Green Version]
- Varganici, C.D.; Rosu, D.; Rosu, L. Life-time prediction of multicomponent polymeric materials. In Photochemical Behaviour of Multicomponent Polymeric-based Materials; Rosu, D., Visakh, P.M., Eds.; Springer: Cham, Switzerland, 2016; pp. 227–258. [Google Scholar] [CrossRef]
- Facca, A.G.; Kortschot, M.T.; Yan, N. Predicting the tensile strength of natural fibre reinforced thermoplastics. Comp. Sci. Technol. 2007, 67, 2454–2466. [Google Scholar] [CrossRef]
- Romanzini, D.; Lavoratti, A.; Ornaghi, H.L., Jr.; Amico, S.C.; Zattera, A.J. Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites. Mater. Des. 2013, 47, 9–15. [Google Scholar] [CrossRef]
- Panigrahy, B.S.; Rana, A.; Chang, P.; Panigrahi, S. Overview of flax fibre reinforced thermoplastic composites. Am. Soc. Agric. Biol. Eng. 2006, 6–165, 1–12. [Google Scholar] [CrossRef] [Green Version]
- ISO 527-1:2012 Plastics—Determination of Tensile Properties. Available online: https://www.iso.org/standard/56045.html (accessed on 1 August 2019).
- ASTM D7028-07. Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA); ASTM International: West Conshohocken, PA, USA, 2015; Available online: www.astm.org (accessed on 10 December 2019).
- Arputhabalan, J.; Palanikumar, K. Tensile properties of natural fiber reinforced polymers: An overview. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2015; Volume 766, pp. 133–139. [Google Scholar]
- Menard, K.P. Dynamic Mechanical Analysis. A practical Introduction; CRC Press–Taylor &Francis Group: New York, NY, USA, 2008. [Google Scholar]
- Cheng, F.; Hu, Y.; Li, L. Interfacial properties of glass fiber/unsaturated polyester resin/poplar wood composites prepared with the prepreg/press process. Fiber Polym. 2015, 16, 911–917. [Google Scholar] [CrossRef]
- Saba, N.; Safwan, A.; Sanyang, M.; Mohammad, F.; Pervaiz, M.; Jawaid, M.; Alothman, O.; Sain, M. Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int. J. Biol. Macromol. 2017, 102, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Devi, L.U.; Bhagawan, S.; Thomas, S. Dynamic mechanical analysis of pineapple leaf/glass hybrid fiber reinforced polyester composites. Polym. Compos. 2010, 31, 956–965. [Google Scholar] [CrossRef]
- Jesuarockiam, N.; Jawaid, M.; Zainudin, E.S.; Thariq Hameed Sultan, M.; Yahaya, R. Enhanced thermal and dynamic mechanical properties of synthetic/natural hybrid composites with graphene nanoplateletes. Polymers 2019, 11, 1085. [Google Scholar] [CrossRef] [Green Version]
- Alothman, O.Y.; Alrashed, M.M.; Anis, A.; Naveen, J.; Jawaid, M. Characterization of date palm fiber-reinforced different polypropylene matrices. Polymers 2020, 12, 597. [Google Scholar]
- Awaja, F.; Zhang, S.; Tripathi, M.; Nikiforov, A.; Pugno, N. Cracks, microcracks and fracture in polymer structure: Formation, detection, autonomic repair. Prog. Mater. Sci. 2016, 83, 536–573. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Méner, E.L.; Feldner, M.; Jiang, C.; Zhang, Z. Falling weight impact damage characterisation of flax and flax basalt vinyl ester hybrid composites. Polymers 2020, 12, 806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanciu, M.D.; Șova, D.; Savin, A.; Iliaș, N.; Gorbacheva, G. Physical and mechanical properties of ammonia-treated black locust wood. Polymers 2020, 12, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Paridah, M.T. A review on dynamic mechanical properties of natural fiber reinforced polymer composites. Constr. Build. Mater. 2016, 106, 149–159. [Google Scholar] [CrossRef]
Samples | No. of Samples | No. of Layers | Thickness [mm] | Width [mm] | Area [mm2] | Gauge Length [mm] |
---|---|---|---|---|---|---|
WPC 0.04 | 5 | 1 | 4.10 ± 0.10 | 10 ± 0.5 | 42 ± 1.5 | 50 |
WPC 0.10 | 5 | 1 | 4.10 ± 0.10 | 10 ± 0.5 | 42 ± 1.5 | 50 |
WPC 0.20 | 5 | 1 | 4.25 ± 0.25 | 10 ± 0.5 | 43 ± 1.5 | 50 |
WPC 0.40 | 5 | 1 | 4.20 ± 0.25 | 10 ± 0.5 | 42 ± 1.5 | 50 |
WPC 1.00 | 5 | 1 | 4.20 ± 0.20 | 10 ± 0.5 | 42 ± 1.5 | 50 |
WPC 2.00 | 5 | 1 | 4.30 ± 0.20 | 10 ± 0.5 | 43 ± 1.5 | 50 |
HMPL | 5 | 1 | 1.80 ± 0.20 | 10 ± 0.5 | 18 ± 1.5 | 50 |
HMPT | 5 | 1 | 1.80 ± 0.20 | 10 ± 0.5 | 18 ± 1.5 | 50 |
FWPC_L | 5 | 6 | 6.80 ± 0.50 | 10 ± 0.3 | 69 ± 4.8 | 50 |
FWPC_T | 5 | 6 | 6.60 ± 0.60 | 10 ± 0.4 | 68 ± 5.5 | 50 |
Properties | Units | Value | Tested Method |
---|---|---|---|
Brookfield Viscosity LVF | mPa·s(cP) | 1100–1300 | ASTM D 2196-86 |
Density | g/cm3 | 1, 10 | ISO 2811-2001 |
PH (max.) | mgKOH/g | 24 | ISO 2114-1996 |
Styrene content | % of weight | 43 ± 2 | B070 |
Curing time: 1% NORPOL PEROXIDE 1 | Minutes | 35–45 | G020 |
Tensile Strength | MPa | 50 | ISO 527-1993 |
Longitudinal Elasticity Modulus | MPa | 4600 | ISO 5271993 |
Elongation | % | 1.6 | ISO 527-1993 |
Bending strength | MPa | 90 | ISO 178-2001 |
Elasticity modulus at bending | MPa | 4000 | ISO 178-2001 |
The shock resistance P4J | mJ/mm2 | 5.0–6.0 | ISO 179-2001 |
Volume contraction | % | 5.5–6.5 | ISO 3521-1976 |
Glass transition temperature | °C | 62 | ISO 75-1993 |
Samples | No. of Samples T = const./T var. | Thickness [mm] | Width [mm] | Gauge Length [mm] |
---|---|---|---|---|
WPC 0.04 | 2/2 | 4.10 ± 0.10 | 10 ± 0.2 | 40 |
WPC 0.10 | 2/2 | 4.10 ± 0.10 | 10 ± 0.5 | 40 |
WPC 0.20 | 2/2 | 4.25 ± 0.25 | 10 ± 0.5 | 40 |
WPC 0.40 | 2/2 | 4.20 ± 0.25 | 10 ± 0.5 | 40 |
WPC 1.00 | 2/2 | 4.20 ± 0.20 | 10 ± 0.5 | 40 |
WPC 2.00 | 2/2 | 4.30 ± 0.20 | 10 ± 0.5 | 40 |
HMPL | 2/2 | 1.80 ± 0.20 | 10 ± 0.5 | 40 |
HMPT | 2/2 | 1.80 ± 0.20 | 10 ± 0.5 | 40 |
FWPC_L | 2/2 | 6.80 ± 0.50 | 10 ± 0.3 | 40 |
FWPC_T | 2/2 | 6.60 ± 0.60 | 10 ± 0.4 | 40 |
Samples | E (MPa) | STDV E (MPa) | σr (MPa) | STDVσr (MPa) | εr (%) | k (106 N/mm) |
---|---|---|---|---|---|---|
WPC 0.04 | 3626 | 218 | 23 | 2 | 0.920 | 0.003052 |
WPC 0.10 | 3693 | 181 | 22 | 4 | 1.261 | 0.003124 |
WPC 0.20 | 4012 | 328 | 26 | 4 | 0.011 | 0.003518 |
WPC 0.40 | 3109 | 138 | 19 | 2 | 0.014 | 0.002762 |
WPC 1.00 | 3041 | 260 | 21 | 3 | 0.011 | 0.002683 |
WPC 2.00 | 2877 | 85 | 20 | 1 | 0.010 | 0.002589 |
HMPL | 3086 | 934 | 26 | 9 | 1.550 | 1.110 |
HMPT | 5005 | 569 | 32 | 5 | 1.199 | 1.802 |
FWPC_L | 8586 | 1247 | 27 | 3 | 0.377 | 7.397 |
FWPC_T | 16700 | 3500 | 38 | 3 | 0.37 | 8.854 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanciu, M.D.; Teodorescu Draghicescu, H.; Tamas, F.; Terciu, O.M. Mechanical and Rheological Behaviour of Composites Reinforced with Natural Fibres. Polymers 2020, 12, 1402. https://doi.org/10.3390/polym12061402
Stanciu MD, Teodorescu Draghicescu H, Tamas F, Terciu OM. Mechanical and Rheological Behaviour of Composites Reinforced with Natural Fibres. Polymers. 2020; 12(6):1402. https://doi.org/10.3390/polym12061402
Chicago/Turabian StyleStanciu, Mariana D., Horatiu Teodorescu Draghicescu, Florin Tamas, and Ovidiu Mihai Terciu. 2020. "Mechanical and Rheological Behaviour of Composites Reinforced with Natural Fibres" Polymers 12, no. 6: 1402. https://doi.org/10.3390/polym12061402
APA StyleStanciu, M. D., Teodorescu Draghicescu, H., Tamas, F., & Terciu, O. M. (2020). Mechanical and Rheological Behaviour of Composites Reinforced with Natural Fibres. Polymers, 12(6), 1402. https://doi.org/10.3390/polym12061402