Microstructural Development and Rheological Study of a Nanocomposite Gel Polymer Electrolyte Based on Functionalized Graphene for Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of PEG-Grafted Graphene
2.3. Preparation of Gel Polymer Electrolyte
2.4. Protocol of Dye-Sensitized Solar Cells Assembly
2.5. Characterization
3. Results and Discussion
3.1. Functionalization Reactions
3.2. Differential Scanning Calorimetry
3.3. Viscoelastic Characteristics of Gel Polymer Electrolytes
3.4. Morphology of the Gel Polymer Electrolytes
3.5. Electrochemical Performance of Gel Polymer Electrolytes
3.5.1. Ionic Conductivity of Gel Polymer Electrolytes
3.5.2. Temperature-Dependent Ionic Conductivity of Gel Polymer Electrolytes
3.5.3. Linear Sweep Voltammetry
3.6. Performance of Dye-Sensitized Solar Cells
3.6.1. Efficiency of Dye-Sensitized Solar Cells
3.6.2. Internal Resistance of Dye-Sensitized Solar Cells
3.6.3. Stability of Dye-Sensitized Solar Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Green, M.A.; Hishikawa, Y.; Warta, W.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W.H. Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 2017, 25, 668–676. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Wang, L.; Kang, B.; Wang, P.; Qiu, Y. Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 549–573. [Google Scholar] [CrossRef]
- Jiang, R.; Michaels, H.; Vlachopoulos, N.; Freitag, M. Beyond the Limitations of Dye-Sensitized Solar Cells. In Dye-Sensitized Solar Cells; Elsevier: Amsterdam, The Netherlands, 2019; pp. 285–323. [Google Scholar]
- Sygkridou, D.; Rapsomanikis, A.; Stathatos, E. Functional transparent quasi-solid state dye-sensitized solar cells made with different oligomer organic/inorganic hybrid electrolytes. Sol. Energy Mater. Sol. Cells 2017, 159, 600–607. [Google Scholar] [CrossRef]
- Su’ait, M.S.; Rahman, M.Y.A.; Ahmad, A. Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Sol. Energy 2015, 115, 452–470. [Google Scholar] [CrossRef]
- Mai, R.; Wu, X.; Jiang, Y.; Meng, Y.; Liu, B.; Hu, X.; Roncali, J.; Zhou, G.; Liu, J.M.; Kempa, K.; et al. An efficient multi-functional material based on polyether-substituted indolocarbazole for perovskite solar cells and solution-processed non-doped OLEDs. J. Mater. Chem. A 2019, 7, 1539–1547. [Google Scholar] [CrossRef]
- Yadav, N.; Yadav, N.; Hashmi, S.A. Ionic liquid incorporated, redox-active blend polymer electrolyte for high energy density quasi-solid-state carbon supercapacitor. J. Power Sources 2020, 451, 227771. [Google Scholar] [CrossRef]
- Saidi, N.M.; Omar, F.S.; Numan, A.; Apperley, D.C.; Algaradah, M.M.; Kasi, R.; Avestro, A.J.; Subramaniam, R.T. Enhancing the Efficiency of a Dye-Sensitized Solar Cell Based on a Metal Oxide Nanocomposite Gel Polymer Electrolyte. ACS Appl. Mater. Interfaces 2019, 11, 30185–30196. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Ghosh, A. Charge Carrier Relaxation in Different Plasticized PEO/PVDF-HFP Blend Solid Polymer Electrolytes. J. Phys. Chem. B 2017, 121, 5422–5432. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Rajiv, S. Grafted PEO polymeric ionic liquid nanocomposite electrospun membrane for efficient and stable dye sensitized solar cell. Electrochim. Acta 2020, 341, 136040. [Google Scholar] [CrossRef]
- Luo, D.; Chen, Q.; Liu, B.; Qiu, Y. Emergence of flexible white organic light-emitting diodes. Polymers 2019, 11, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, Y.; Kataoka, H.; Quartarone, E.; Mustarelli, P. Carrier migration mechanism of physically cross-linked polymer gel electrolytes based on PVDF membranes. J. Phys. Chem. B 2002, 106, 7200–7204. [Google Scholar] [CrossRef]
- Nath, B.C.; Das, D.; Kamrupi, I.R.; Mohan, K.J.; Ahmed, G.A.; Dolui, S.K. An efficient quasi solid state dye sensitized solar cell based on polyethylene glycol/graphene nanosheet gel electrolytes. RSC Adv. 2015, 5, 95385–95393. [Google Scholar] [CrossRef]
- Li, W.; Zhu, Z.; Shen, W.; Tang, J.; Yang, G.; Xu, Z. A novel PVdF-based composite gel polymer electrolyte doped with ionomer modified graphene oxide. RSC Adv. 2016, 6, 97338–97345. [Google Scholar] [CrossRef]
- Alipoori, S.; Torkzadeh, M.M.; Moghadam, M.H.M.; Mazinani, S.; Aboutalebi, S.H.; Sharif, F. Graphene oxide: An effective ionic conductivity promoter for phosphoric acid-doped poly (vinyl alcohol) gel electrolytes. Polymer 2019, 184, 121908. [Google Scholar] [CrossRef]
- Zebardastan, N.; Ramesh, S.; Ramesh, K. Performance enhancement of poly (vinylidene fluoride-co-hexafluoro propylene)/polyethylene oxide based nanocomposite polymer electrolyte with ZnO nanofiller for dye-sensitized solar cell. Org. Electron. 2017, 49, 292–299. [Google Scholar] [CrossRef]
- Mohamadi, M.; Papila, M.; Garmabi, H.; Gohari Bajestani, Z. Morphological evaluation and phase behavior of PVDF/PEO blends in the presence of graphene nanoplatelets through rheological measurements. J. Appl. Polym. Sci. 2019, 136, 48017. [Google Scholar] [CrossRef]
- Manafi, P.; Ghasemi, I.; Manafi, M.R.; Ehsaninamin, P.; Hassanpour Asl, F. Non-isothermal crystallization kinetics assessment of poly(lactic acid)/graphene nanocomposites. Iran. Polym. J. 2017, 26, 377–389. [Google Scholar] [CrossRef]
- Gomari, S.; Ghasemi, I.; Esfandeh, M. Effect of polyethylene glycol-grafted graphene on the non-isothermal crystallization kinetics of poly(ethylene oxide) and poly(ethylene oxide): Lithium perchlorate electrolyte systems. Mater. Res. Bull. 2016, 83, 24–34. [Google Scholar] [CrossRef]
- Gong, X.; Liu, Y.; Wang, Y.; Xie, Z.; Dong, Q.; Dong, M.; Liu, H.; Shao, Q.; Lu, N.; Murugadoss, V.; et al. Amino graphene oxide/dopamine modified aramid fibers: Preparation, epoxy nanocomposites and property analysis. Polymer 2019, 168, 131–137. [Google Scholar] [CrossRef]
- Chen, S.; Xiang, Y.; Peng, C.; Xu, W.; Banks, M.K.; Wu, R. Synthesis of a novel graphene-based gold nanocomposite using PVEIM-b-PNIPAM as a stabilizer and its thermosensitivity for the catalytic reduction of 4-nitrophenol. Inorg. Chem. Front. 2019, 6, 903–913. [Google Scholar] [CrossRef]
- Ghann, W.E.; Kang, H.; Uddin, J.; Chowdhury, F.A.; Khondaker, S.I.; Moniruzzaman, M.; Kabir, M.H.; Rahman, M.M. Synthesis and characterization of reduced graphene oxide and their application in dye-sensitized solar cells. ChemEngineering 2019, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Jha, P.K.; Gupta, K.; Debnath, A.K.; Rana, S.; Sharma, R.; Ballav, N. 3D mesoporous reduced graphene oxide with remarkable supercapacitive performance. Carbon N. Y. 2019, 148, 354–360. [Google Scholar] [CrossRef]
- Shen, W.; Li, K.; Lv, Y.; Xu, T.; Wei, D.; Liu, Z. Highly-Safe and Ultra-Stable All-Flexible Gel Polymer Lithium Ion Batteries Aiming for Scalable Applications. Adv. Energy Mater. 2020, 10, 1904281. [Google Scholar] [CrossRef]
- Porfarzollah, A.; Mohammad-Rezaei, R.; Bagheri, M. Ionic liquid-functionalized graphene quantum dots as an efficient quasi-solid-state electrolyte for dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 2020, 31, 2288–2297. [Google Scholar] [CrossRef]
- Marchezi, P.E.; Sonai, G.G.; Hirata, M.K.; Schiavon, M.A.; Nogueira, A.F. Understanding the Role of Reduced Graphene Oxide in the Electrolyte of Dye-Sensitized Solar Cells. J. Phys. Chem. C 2016, 120, 23368–23376. [Google Scholar] [CrossRef]
- Gomari, S.; Esfandeh, M.; Ghasemi, I. All-solid-state flexible nanocomposite polymer electrolytes based on poly(ethylene oxide): Lithium perchlorate using functionalized graphene. Solid State Ion. 2017, 303, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Prabakaran, K.; Jandas, P.J.; Mohanty, S.; Nayak, S.K. Synthesis, characterization of reduced graphene oxide nanosheets and its reinforcement effect on polymer electrolyte for dye sensitized solar cell applications. Sol. Energy 2018, 170, 442–453. [Google Scholar] [CrossRef]
- Rehman, S.; Noman, M.; Khan, A.D.; Saboor, A.; Ahmad, M.S.; Khan, H.U. Synthesis of polyvinyl acetate /graphene nanocomposite and its application as an electrolyte in dye sensitized solar cells. Optik 2020, 202, 163591. [Google Scholar] [CrossRef]
- Arof, A.K.; Naeem, M.; Hameed, F.; Jayasundara, W.J.M.J.S.R.; Careem, M.A.; Teo, L.P.; Buraidah, M.H. Quasi solid state dye-sensitized solar cells based on polyvinyl alcohol (PVA) electrolytes containing redox couple. Opt. Quantum Electron. 2014, 46, 143–154. [Google Scholar] [CrossRef]
- Song, Y.; Zheng, Q. Linear rheology of nanofilled polymers. J. Rheol. 2015, 59, 155–191. [Google Scholar] [CrossRef]
- Aram, E.; Ehsani, M.; Khonakdar, H.A.; Jafari, S.H.; Nouri, N.R. Functionalization of graphene nanosheets and its dispersion in PMMA/PEO blend: Thermal, electrical, morphological and rheological analyses. Fibers Polym. 2016, 17, 174–180. [Google Scholar] [CrossRef]
- Muhammad, F.H.; Winie, T. Influence of 1-methyl-3-propylimidazolium iodide ionic liquid on the performance of dye-sensitized solar cell using hexanoyl chitosan/poly (vinyl chloride) based polymer electrolyte. Optik 2020, 208, 164558. [Google Scholar] [CrossRef]
- Pavani, Y.; Ravi, M.; Bhavani, S.; Sharma, A.K.; Narasimha Rao, V.V.R. Characterization of poly (vinyl alcohol)/potassium chloride polymer electrolytes for electrochemical cell applications. Polym. Eng. Sci. 2012, 52, 1685–1692. [Google Scholar] [CrossRef]
- Vyas, M.K.; Chandra, A. Role of organic/inorganic salts and nanofillers in polymer nanocomposites: Enhanced conduction, rheological, and thermal properties. J. Mater. Sci. 2018, 53, 4987–5003. [Google Scholar] [CrossRef]
- Niu, L.; Luo, Y.; Li, Z. A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly (ethylene glycol). Sens. Actuators B Chem. 2007, 126, 361–367. [Google Scholar] [CrossRef]
- Watanabe, M.; Sanui, K.; Ogata, N.; Kobayashi, T.; Ohtaki, Z. Ionic conductivity and mobility in network polymers from poly (propylene oxide) containing lithium perchlorate. J. Appl. Phys. 1985, 57, 123–128. [Google Scholar] [CrossRef]
- Ahmadi-Moghadam, B.; Sharafimasooleh, M.; Shadlou, S.; Taheri, F. Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater. Des. 2015, 66, 142–149. [Google Scholar] [CrossRef]
- Manafi, P.; Ghasemi, I.; Karrabi, M.; Azizi, H.; Ehsaninamin, P. Effect of graphene nanoplatelets on crystallization kinetics of poly (lactic acid). Soft Mater. 2014, 12, 433–444. [Google Scholar] [CrossRef]
- Yang, B.X.; Shi, J.H.; Pramoda, K.P.; Goh, S.H. Enhancement of stiffness, strength, ductility and toughness of poly(ethylene oxide) using phenoxy-grafted multiwalled carbon nanotubes. Nanotechnology 2007, 18, 125606. [Google Scholar] [CrossRef]
- Rostami, A.; Nazockdast, H.; Karimi, M. Graphene induced microstructural changes of PLA/MWCNT biodegradable nanocomposites: Rheological, morphological, thermal and electrical properties. RSC Adv. 2016, 6, 49747–49759. [Google Scholar] [CrossRef]
- Han, S.; Kim, C.; Kwon, D. Thermal/oxidative degradation and stabilization of polyethylene glycol. Polymer 1997, 38, 317–323. [Google Scholar] [CrossRef]
- Gomari, S.; Ghasemi, I.; Esfandeh, M. Functionalized graphene nanoplatelets/poly(ethylene oxide) nanocomposites: Correlation between crystallization behavior and mechanical performance. Fibers Polym. 2017, 18, 2153–2160. [Google Scholar] [CrossRef]
- Manafi, P.; Ghasemi, I.; Karrabi, M.; Azizi, H.; Manafi, M.R.; Ehsaninamin, P. Thermal stability and thermal degradation kinetics (model-free kinetics) of nanocomposites based on poly (lactic acid)/graphene: The influence of functionalization. Polym. Bull. 2015, 72, 1095–1112. [Google Scholar] [CrossRef]
- Rostami, A.; Vahdati, M.; Nazockdast, H. Unraveling the localization behavior of MWCNTs in binary polymer blends using thermodynamics and viscoelastic approaches. Polym. Compos. 2018, 39, 2356–2367. [Google Scholar] [CrossRef]
- Rostami, A.; Masoomi, M.; Fayazi, M.J.; Vahdati, M. Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC Adv. 2015, 5, 32880–32890. [Google Scholar] [CrossRef]
- Zhu, J.M.; Zare, Y.; Rhee, K.Y. Analysis of the roles of interphase, waviness and agglomeration of CNT in the electrical conductivity and tensile modulus of polymer/CNT nanocomposites by theoretical approaches. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 29–36. [Google Scholar] [CrossRef]
- Palierne, J.F. Linear rheology of viscoelastic emulsions with interfacial tension. Rheol. Acta 1990, 29, 204–214. [Google Scholar] [CrossRef]
- Van Schalkwijk, W.; Scrosati, B. Advances in lithium ion batteries introduction. In Advances in Lithium-Ion Batteries; Springer: Berlin/Heidelberg, Germany, 2002; pp. 1–5. [Google Scholar]
- Hiemenz, P.C. Principles of Colloid and Surface Chemistry; Dekker, M., Ed.; CRC Press: New York, NY, USA, 1986; Volume 188. [Google Scholar]
- Gadipelli, S.; Guo, Z.X. Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 2015, 69, 1–60. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, K.; Basheer Ahamed, M.; Sankaran, S.; Khadheer Pasha, S.K.; Kumar Sadasivuni, K.; Ponnamma, D.; Al-Ali AlMaadeed, M. Studies on the Mechanical, Morphological and Electrical Properties of Highly Dispersible Graphene Oxide Reinforced Polypyrrole and Polyvinylalcohol Blend Composites. Mater. Today Proc. 2018, 5, 8744–8752. [Google Scholar] [CrossRef]
- Pullanjiot, N.; Swaminathan, S. Enhanced electrochemical properties of metal oxide interspersed polymer gel electrolyte for QSDSSC application. Sol. Energy 2019, 186, 37–45. [Google Scholar] [CrossRef]
- Arrhenius, S. On the reaction rate of the inversion of non-refined sugar upon souring. Z. Phys. Chem. 1889, 4, 226–248. [Google Scholar]
- Ratner, M.A.; Shriver, D.F. Ion transport in solvent-free polymers. Chem. Rev. 1988, 88, 109–124. [Google Scholar] [CrossRef]
- Fulcher, G.S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 1925, 8, 339–355. [Google Scholar] [CrossRef]
- Aziz, S.B.; Woo, T.J.; Kadir, M.F.Z.; Ahmed, H.M. A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Devices 2018, 3, 1–17. [Google Scholar] [CrossRef]
- Yanagida, S. Recent research progress of dye-sensitized solar cells in Japan. Comptes Rendus Chim. 2006, 9, 597–604. [Google Scholar] [CrossRef]
- Prabakaran, K.; Mohanty, S.; Nayak, S.K. Improved electrochemical and photovoltaic performance of dye sensitized solar cells based on PEO/PVDF-HFP/silane modified TiO2 electrolytes and MWCNT/Nafion® counter electrode. RSC Adv. 2015, 5, 40491–40504. [Google Scholar] [CrossRef]
- Zheng, J. Graphene tailored polymer gel electrolytes for 9.1%-efficiency quasi-solid-state dye-sensitized solar cells. J. Power Sources 2017, 348, 239–245. [Google Scholar] [CrossRef]
- Jung, H.S.; Lee, J.K. Dye sensitized solar cells for economically viable photovoltaic systems. J. Phys. Chem. Lett. 2013, 4, 1682–1693. [Google Scholar] [CrossRef]
- Son, Y.J.; Kang, J.S.; Yoon, J.; Kim, J.; Jeong, J.; Kang, J.; Lee, M.J.; Park, H.S.; Sung, Y.E. Influence of TiO2 particle size on dye-sensitized solar cells employing an organic sensitizer and a cobalt (III/II) redox electrolyte. J. Phys. Chem. C 2018, 122, 7051–7060. [Google Scholar] [CrossRef]
- Zhang, K.; Cui, Z.; Xing, G.; Feng, Y.; Meng, S. Improved performance of dye-sensitized solar cells based on modified kaolin/PVDF-HFP composite gel electrolytes. RSC Adv. 2016, 6, 100079–100089. [Google Scholar] [CrossRef]
- Das, S.; Ghosh, A. Effect of plasticizers on ionic conductivity and dielectric relaxation of PEO-LiClO4 polymer electrolyte. Electrochim. Acta 2015, 171, 59–65. [Google Scholar] [CrossRef]
- Hinsch, A.; Kroon, J.M.; Kern, R.; Uhlendorf, I.; Holzbock, J.; Meyer, A.; Ferber, J. Long-term stability of dye-sensitised solar cells. Prog. Photovolt. Res. Appl. 2001, 9, 425–438. [Google Scholar] [CrossRef]
Sample Name | Polymer Electrolyte | Constituents in Weight Percent |
---|---|---|
PVDF–HFP/PEO | Neat Blend | 60/40 |
Gel | PVDF–HFP/PEO: IL: redox couple | 42/28: 10: 20 |
Gel–GNP(x)* | “PVDF–HFP/PEO”: IL: redox couple: GNP | “42/28-x”: 10: 20: x |
Gel–FGNP(x) | +PVDF–HFP/PEO”: IL: redox couple: FGNP | “42/28-x”: 10: 20: x |
Sample | Tg | Tm A | Tm B | ΔHA | ΔHB | χ% A | χ% Β | χ% An | χ% Βn |
---|---|---|---|---|---|---|---|---|---|
PVDF–HFP (A) | −21.54 | 141.51 | - | 28.74 | - | 27.45 | - | - | - |
PEO (B) | −41.41 | - | 67.23 | - | 126.52 | - | 59.20 | - | - |
PVDF–HFP/PEO | −24.77 | 140.4 | 66.58 | 14.38 | 35.21 | 22.90 | 41.19 | - | - |
Gel | −61.47 | 123.11 | 45.64 | 9.21 | 22.36 | 14.66 | 26.16 | 20.94 | 37.31 |
Gel–GNP(1) | −63.59 | 115.68 | 40.41 | 4.48 | 20.34 | 7.13 | 23.80 | 10.33 | 34.50 |
Gel–FGNP(0.75) | −66.07 | 110.48 | 36.73 | 3.71 | 19.41 | 5.90 | 22.71 | 8.52 | 32.79 |
Sample Code | Graphene Type | Membrane Electrolyte Thickness (μm) | Rb of the Electrolyte (ohm) | σ (mS cm−1) |
---|---|---|---|---|
Gel | - | 283.71 ± 5 | 16.81 ± 0.24 | 2.15 ± 0.08 |
Gel–GNP(0.1) | Ordinary | 344.27 ± 9 | 14.57 ± 0.41 | 3.01 ± 0.47 |
Gel–GNP(0.25) | Ordinary | 337.88 ± 1 | 13.84 ± 0.85 | 3.11 ± 0.27 |
Gel–GNP(0.5) | Ordinary | 325.57 ± 4 | 12.53 ± 0.86 | 3.31 ± 0.09 |
Gel–GNP(0.75) | Ordinary | 286.00 ± 7 | 9.39 ± 0.04 | 3.88 ± 0.97 |
Gel–GNP(1) | Ordinary | 216.74 ± 5 | 6.99 ± 0.63 | 3.95 ± 0.35 |
Gel–GNP(1.5) | Ordinary | 221.39 ± 8 | 7.25 ± 0.95 | 3.89 ± 0.19 |
Gel–FGNP(0.1) | Functionalized | 323.54 ± 3 | 13.21 ± 0.17 | 3.12 ± 0.41 |
Gel–FGNP(0.25) | Functionalized | 304.91 ± 1 | 10.88 ± 0.76 | 3.57 ± 0.61 |
Gel–FGNP(0.5) | Functionalized | 302.33 ± 4 | 9.85 ± 0.41 | 3.91 ± 0.58 |
Gel–FGNP(0.75) | Functionalized | 271.34 ± 5 | 8.41 ± 0.63 | 4.11 ± 0.79 |
Gel–FGNP(1) | Functionalized | 299.75 ± 2 | 9.57 ± 0.11 | 3.99 ± 0.31 |
Gel–FGNP(1.5) | Functionalized | 309.71 ± 8 | 10.41 ± 0.58 | 3.79 ± 0.59 |
GPE | Graphene Type | / 10−9 cm2 s−1 | Ea*/eV |
---|---|---|---|
Gel | - | 2.48 | 0.079 |
Gel–GNP(1) | Ordinary | 6.53 | 0.070 |
Gel–FGNP(1) | Functionalized | 7.55 | 0.065 |
Gel–FGNP(0.75) | Functionalized | 8.14 | 0.064 |
DSSC* | VOC (V) | Jsc (mA cm−2) | FF (%) | ɳ (%) | Rs (Ω) | RPT (Ω) | RCT (Ω) | Rdiff (Ω) |
---|---|---|---|---|---|---|---|---|
BMIMBF4 | 0.688 ± 0.002 | 17.98 ± 0.01 | 59.63 ± 0.003 | 7.38 ± 0.11 | - | - | - | - |
PVDF–HFP/PEO | 0.622 ± 0.017 | 2.13 ± 0.04 | 47.31 ± 0.015 | 0.62 ± 0.09 | 20.16 ± 0.15 | 11.41 ± 0.38 | 45.11 ± 0.29 | 28.7 ± 0.36 |
Gel | 0.617 ± 0.005 | 10.64 ± 0.04 | 61.51 ± 0.007 | 4.03 ± 0.06 | 16.9 ± 0.38 | 8.95 ± 0.32 | 38.3 ± 0.21 | 24.27 ± 0.31 |
Gel–GNP(1) | 0.638 ± 0.010 | 12.74 ± 0.06 | 58.89 ± 0.014 | 4.78 ± 0.13 | 13.81 ± 0.25 | 6.35 ± 0.27 | 39.92 ± 0.42 | 23.14 ± 0.37 |
Gel–FGNP(1) | 0.637 ± 0.002 | 13.24 ± 0.03 | 61.69 ± 0.011 | 5.20 ± 0.11 | 12.17 ± 0.28 | 7.5 ± 0.21 | 40.08 ± 0.25 | 21.01 ± 0.22 |
Gel–FGNP(0.75) | 0.637 ± 0.005 | 13.81 ± 0.02 | 61.95 ± 0.006 | 5.45 ± 0.09 | 11.84 ± 0.17 | 6.81 ± 0.14 | 39.48 ± 0.11 | 20.2 ± 0.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manafi, P.; Nazockdast, H.; Karimi, M.; Sadighi, M.; Magagnin, L. Microstructural Development and Rheological Study of a Nanocomposite Gel Polymer Electrolyte Based on Functionalized Graphene for Dye-Sensitized Solar Cells. Polymers 2020, 12, 1443. https://doi.org/10.3390/polym12071443
Manafi P, Nazockdast H, Karimi M, Sadighi M, Magagnin L. Microstructural Development and Rheological Study of a Nanocomposite Gel Polymer Electrolyte Based on Functionalized Graphene for Dye-Sensitized Solar Cells. Polymers. 2020; 12(7):1443. https://doi.org/10.3390/polym12071443
Chicago/Turabian StyleManafi, Pedram, Hossein Nazockdast, Mohammad Karimi, Mojtaba Sadighi, and Luca Magagnin. 2020. "Microstructural Development and Rheological Study of a Nanocomposite Gel Polymer Electrolyte Based on Functionalized Graphene for Dye-Sensitized Solar Cells" Polymers 12, no. 7: 1443. https://doi.org/10.3390/polym12071443
APA StyleManafi, P., Nazockdast, H., Karimi, M., Sadighi, M., & Magagnin, L. (2020). Microstructural Development and Rheological Study of a Nanocomposite Gel Polymer Electrolyte Based on Functionalized Graphene for Dye-Sensitized Solar Cells. Polymers, 12(7), 1443. https://doi.org/10.3390/polym12071443