Viscoelastic Effects on Drop Deformation Using a Machine Learning-Enhanced, Finite Element method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Finite Element Discretization
2.1.1. Governing Equations
2.1.2. Interface Capturing Technique
2.2. Computational Implementation
2.2.1. Machine Learning Enhancement
2.2.2. PETSc-Based Solver
2.2.3. Boundary Conditions
3. Results and Discussion
3.1. Drop Deformation in Steady, Shear Flow
3.1.1. Newtonian Drop in a Newtonian Matrix
3.1.2. Viscoelastic Drop in a Newtonian Matrix
3.2. Drop Deformation in Buoyancy-Driven Flow
3.2.1. Convergence Results
3.2.2. Impact of CSRBF smoothness on the polymer stress tensor
3.2.3. Flow Pattern under Increasing Viscoelastic Effects
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
Viscosity of the continuous phase | |
Droplet viscosity | |
Density of the continuous phase | |
Droplet density | |
Polymer (“extra-”)stress tensor | |
Shear component of the polymer stress tensor | |
Normal stress difference of the polymer stress tensor | |
Level set function | |
Compactly-supported Wendland function | |
Support size of the CSRBF | |
Trial basis function | |
b | FENE extensibility parameter |
c | Concentration parameter |
Droplet circularity | |
Time step size | |
h | Grid size of the uniform, unstructured mesh |
p | Pressure field |
Velocity field | |
s | Approximation interpolant of the CSRBF |
D | Deformation parameter |
Number of uncorrelated dumbbells per ensemble | |
Number of ensembles of polymer particles | |
Number of marker particles | |
Capillary number | |
Froude number | |
Reynolds number | |
Weber number | |
ALE | Arbitrary Lagrangian-Eulerian method |
BD | Brownian Dynamics simulations |
CSRBF | Compactly-Supported Radial Basis Function |
FEM | Finite Element Method |
FENE | Finitely Extensible Non-linear Elastic model |
LS | Level Set method |
LSC | Least Squares Commutator preconditioner |
ML | Machine Learning |
NN | Nearest Neighbor |
PBC | Periodic Boundary Conditions |
PLS | Particle Level Set |
RBF | Radial Basis Function |
VOF | Volume-Of-Fluid method |
[l c] | Vector of interpolation coefficients for the CSRBF |
K | Discrete matrix system |
PETSc | Portable, Extensible Toolkit for Scientific Computation |
References
- Zenit, R.; Feng, J. Hydrodynamic Interactions among Bubbles, Drops, and Particles in Non-Newtonian Liquids. Annu. Rev. Fluid Mech. 2018, 50, 505–534. [Google Scholar] [CrossRef]
- Aytouna, M.; Paredes, J.; Shahidzadeh-Bonn, N.; Moulinet, S.; Wagner, C.; Amarouchene, Y.; Eggers, J.; Bonn, D. Drop Formation in Non-Newtonian Fluids. Phys. Rev. Lett. 2013, 110, 034501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieto-López, L.O.; Xu, J.; Cui, J. Magnetic-Responsive Bendable Nozzles for Open Surface Droplet Manipulation. Polymers 2019, 11, 1792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feigl, K.; Baniabedalruhman, A.; Tanner, F.X.; Windhab, E.J. Numerical simulations of the breakup of emulsion droplets inside a spraying nozzle. Phys. Fluids 2016, 28, 123103. [Google Scholar] [CrossRef]
- Fortelný, I.; Jůza, J. Description of the Droplet Size Evolution in Flowing Immiscible Polymer Blends. Polymers 2019, 11, 761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammad Karim, A. Experimental dynamics of Newtonian and non-Newtonian droplets impacting liquid surface with different rheology. Phys. Fluids 2020, 32, 043102. [Google Scholar] [CrossRef]
- Prieto, J.L. Stochastic particle level set simulations of buoyancy-driven droplets in non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 2015, 226, 16–31. [Google Scholar] [CrossRef]
- Faulde, M.; Siemes, E.; Wöll, D.; Jupke, A. Fluid Dynamics of Microgel-Covered Drops Reveal Impact on Interfacial Conditions. Polymers 2018, 10, 809. [Google Scholar] [CrossRef] [Green Version]
- Elgeti, S.; Sauerland, H. Deforming fluid domains within the finite element method: Five mesh-based tracking methods in comparison. Arch. Comput. Method. E. 2016, 23, 323–361. [Google Scholar] [CrossRef] [Green Version]
- Donea, J.; Huerta, A.; Ponthot, J.P.; Rodriguez-Ferran, A. Encyclopedia of Computational Mechanics Vol. 1: Fundamentals., Chapter 14: Arbitrary Lagrangian-Eulerian Methods; Wiley & Sons: Chichester, UK, 2004. [Google Scholar]
- Bo, W.; Shashkov, M. Adaptive reconnection-based arbitrary Lagrangian Eulerian method. J. Comput. Phys. 2015, 299, 902–939. [Google Scholar] [CrossRef] [Green Version]
- Kenamond, M.; Shashkov, M. The distribution-based remapping of the nodal mass and momentum between arbitrary meshes for staggered arbitrary Lagrangian-Eulerian hydrodynamics. Comput. Fluids 2020, 201, 104469. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- López, J.; Hernández, J.; Gómez, P.; Faura, F. A volume of fluid method based on multidimensional advection and spline interface reconstruction. J. Comput. Phys. 2004, 195, 718–742. [Google Scholar] [CrossRef]
- López, J.; Hernández, J.; Gómez, P.; Faura, F. Non-convex analytical and geometrical tools for volume truncation, initialization and conservation enforcement in VOF methods. J. Comput. Phys. 2019, 392, 666–693. [Google Scholar] [CrossRef]
- Sethian, J.A.; Smereka, P. Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 2003, 35, 341–372. [Google Scholar] [CrossRef] [Green Version]
- Gibou, F.; Fedkiw, R.; Osher, S. A review of level-set methods and some recent applications. J. Comput. Phys. 2018, 353, 82–109. [Google Scholar] [CrossRef]
- Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchell, I. A Hybrid Particle Level Set Method for Improved Interface Capturing. J. Comput. Phys. 2002, 183, 83–116. [Google Scholar] [CrossRef] [Green Version]
- Thome, J.R. Encyclopedia of Two-Phase Heat Transfer and Flow III; World Scientific Publishing: Singapore, 2018. [Google Scholar] [CrossRef]
- Yue, P.; Feng, J.J.; Liu, C.; Shen, J. A diffuse-interface method for two-phase complex fluids. J. Fluid Mech. 2004, 515, 293–317. [Google Scholar] [CrossRef] [Green Version]
- Yue, P.; Feng, J.J.; Liu, C.; Shen, J. Transient drop deformation upon startup of shear in viscoelastic fluids. Phys. Fluids 2005, 17, 123101. [Google Scholar] [CrossRef] [Green Version]
- Yue, P.; Feng, J.J.; Liu, C.; Shen, J. Viscoelastic effects on drop deformation in steady shear. J. Fluid Mech. 2005, 540, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Pillapakkam, S.B.; Singh, P.; Blackmore, D.; Aubry, N. Transient and steady state of a rising bubble in a viscoelastic fluid. J. Fluid Mech. 2007, 589, 215–252. [Google Scholar] [CrossRef]
- Foteinopoulou, K.; Laso, M. Numerical simulation of bubble dynamics in a Phan-Thien-Tanner liquid: Non-linear shape and size oscillatory response under periodic pressure. Ultrasonics 2010, 50, 758–776. [Google Scholar] [CrossRef] [PubMed]
- Castillo, E.; Baiges, J.; Codina, R. Approximation of the two-fluid flow problem for viscoelastic fluids using the level set method and pressure enriched finite element shape functions. J. Non-Newtonian Fluid Mech. 2015, 225, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Fraggedakis, D.; Pavlidis, M.; Dimakopoulos, Y.; Tsamopoulos, J. On the velocity discontinuity at a critical volume of a bubble rising in a viscoelastic fluid. J. Fluid Mech. 2016, 789, 310–346. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Cheng, Z. Direct Numerical Simulation of Gas-Liquid Drag-Reducing Cavity Flow by the VOSET Method. Polymers 2019, 11, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, C.; Xu, K.; Mohanty, K.; Wang, M.; Balhoff, M.T. Nonwetting droplet oscillation and displacement by viscoelastic fluids. Phys. Rev. Fluids 2020, 5, 063301. [Google Scholar] [CrossRef]
- Keunings, R. Micro-macro methods for the multiscale simulation of viscoelastic flow using molecular models of kinetic theory. In Rheology Reviews; Binding, D.M., Walters, K., Eds.; British Society of Rheology: Aberystwyth, UK, 2004; pp. 67–98. [Google Scholar]
- Degond, P.; Lozinski, A.; Owens, R.G. Kinetic models for dilute solutions of dumbbells in non-homogeneous flows revisited. J. Non-Newtonian Fluid Mech. 2010, 165, 509–518. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.; de Pablo, J.J. Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials. Annu. Rev. Mater. Res. 2013, 43, 1–34. [Google Scholar] [CrossRef]
- Stephanou, P.; Kröger, M. Tumbling-Snake Model for Polymeric Liquids Subjected to Biaxial Elongational Flows with a Focus on Planar Elongation. Polymers 2018, 10, 329. [Google Scholar] [CrossRef] [Green Version]
- Megariotis, G.; Vogiatzis, G.; Sgouros, A.; Theodorou, D. Slip Spring-Based Mesoscopic Simulations of Polymer Networks: Methodology and the Corresponding Computational Code. Polymers 2018, 10, 1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laso, M.; Öttinger, H.C. Calculation of viscoelastic flow using molecular models: The CONNFFESSIT approach. J. Non-Newtonian Fluid Mech. 1993, 47, 1–20. [Google Scholar] [CrossRef]
- Cormenzana, J.; Ledda, A.; Laso, M.; Debbaut, B. Calculation of free surface flows using CONNFFESSIT. J. Rheol. 2001, 45, 237–258. [Google Scholar] [CrossRef]
- Grande, E.; Laso, M.; Picasso, M. Calculation of variable-topology free surface flows using CONNFFESSIT. J. Non-Newtonian Fluid Mech. 2003, 113, 127–145. [Google Scholar] [CrossRef]
- Prieto, J.L. SLEIPNNIR: A multiscale, particle level set method for Newtonian and non-Newtonian interface flows. Comput. Methods Appl. Mech. Eng. 2016, 307, 164–192. [Google Scholar] [CrossRef]
- Prieto, J.L.; Bermejo, R.; Laso, M. A semi-Lagrangian micro-macro method for viscoelastic flow calculations. J. Non-Newtonian Fluid Mech. 2010, 165, 120–135. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, M.; Bhat, P.P.; Prakash, J.R.; Pasquali, M. Multiscale simulation of viscoelastic free surface flows. J. Non-Newtonian Fluid Mech. 2006, 140, 87–107. [Google Scholar] [CrossRef]
- Xu, X.; Ouyang, J.; Li, W.; Liu, Q. SPH simulations of 2D transient viscoelastic flows using Brownian Configuration Fields. J. Non-Newtonian Fluid Mech. 2014, 208–209, 59–71. [Google Scholar] [CrossRef]
- Hulsen, M.A.; van Heel, A.P.G.; van den Brule, B.H.A.A. Simulation of viscoelastic flows using Brownian Configuration Fields. J. Non-Newtonian Fluid Mech. 1997, 70, 79–101. [Google Scholar] [CrossRef]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: New york, NY, USA, 2014. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Doblies, A.; Boll, B.; Fiedler, B. Prediction of Thermal Exposure and Mechanical Behavior of Epoxy Resin Using Artificial Neural Networks and Fourier Transform Infrared Spectroscopy. Polymers 2019, 11, 363. [Google Scholar] [CrossRef] [Green Version]
- Jackson, N.E.; Bowen, A.S.; de Pablo, J.J. Efficient Multiscale Optoelectronic Prediction for Conjugated Polymers. Macromolecules 2020, 53, 482–490. [Google Scholar] [CrossRef]
- Kopal, I.; Harničárová, M.; Valíček, J.; Krmela, J.; Lukáč, O. Radial Basis Function Neural Network-Based Modeling of the Dynamic Thermo-Mechanical Response and Damping Behavior of Thermoplastic Elastomer Systems. Polymers 2019, 11, 1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandrasekaran, A.; Kim, C.; Venkatram, S.; Ramprasad, R. A Deep Learning Solvent-Selection Paradigm Powered by a Massive Solvent/Nonsolvent Database for Polymers. Macromolecules 2020, 53, 4764–4769. [Google Scholar] [CrossRef]
- Ma, M.; Lu, J.; Tryggvason, G. Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system. Phys. Fluids 2015, 27, 092101. [Google Scholar] [CrossRef]
- Ladický, L.; Jeong, S.; Solenthaler, B.; Pollefeys, M.; Gross, M. Data-Driven Fluid Simulations Using Regression Forests. ACM Trans. Graph. 2015, 34, 1–9. [Google Scholar] [CrossRef]
- Gibou, F.; Hyde, D.; Fedkiw, R. Sharp interface approaches and deep learning techniques for multiphase flows. J. Comput. Phys. 2019, 380, 442–463. [Google Scholar] [CrossRef]
- Öttinger, H.C. Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms; Springer: Berlin, Germany, 1996. [Google Scholar]
- Prieto, J.L. An RBF-reconstructed, polymer stress tensor for stochastic, particle-based simulations of non-Newtonian, multiphase flows. J. Non-Newtonian Fluid Mech. 2016, 227, 90–99. [Google Scholar] [CrossRef]
- Bermejo, R.; Prieto, J.L. A Semi-Lagrangian Particle Level Set Finite Element Method for Interface Problems. SIAM J. Sci. Comput. 2013, 35, A1815–A1846. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.T.; Tsai, Y.H. Redistancing by flow of time dependent eikonal equation. J. Comput. Phys. 2008, 227, 4002–4017. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Tantau, T. The TikZ and PGF Packages. Comprehensive TEX Archive Network, CTAN. 2020. Available online: http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf (accessed on 24 July 2020).
- Ramachandran, P.; Varoquaux, G. Mayavi: 3D Visualization of Scientific Data. Comput. Sci. Eng. 2011, 13, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Pandas Development Team. Pandas-Dev/Pandas: Pandas. 2020. Available online: https://doi.org/10.5281/zenodo.3509134 (accessed on 24 July 2020).
- Schaback, R.; Wendland, H. Kernel techniques: From machine learning to meshless methods. Acta Numerica 2006, 15, 543–639. [Google Scholar] [CrossRef] [Green Version]
- Carr, J.C.; Beatson, R.K.; Cherrie, J.B.; Mitchell, T.J.; Fright, W.R.; McCallum, B.C.; Evans, T.R. Reconstruction and Representation of 3D Objects with Radial Basis Functions. In SIGGRAPH’2001: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques; Association for Computing Machinery: New York, NY, USA, 2001; pp. 67–76. [Google Scholar]
- Ohtake, Y.; Belyaev, A.; Seidel, H.P. 3D scattered data interpolation and approximation with multilevel compactly supported RBFs. Graph. Models 2005, 67, 150–165. [Google Scholar] [CrossRef]
- Wendland, H. Scattered Data Approximation; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Balay, S.; Abhyankar, S.; Adams, M.F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W.D.; et al. PETSc Web Page. Available online: https://www.mcs.anl.gov/petsc (accessed on 24 July 2020).
- Dean, E.J.; Glowinski, R. On some finite element methods for the numerical simulation of incompressible viscous flow. In Incompressible Computational Fluid Dynamics; Gunzburger, M.D., Nicolaides, R.A., Eds.; Cambridge University Press: New York, NY, USA, 1993; pp. 109–150. [Google Scholar]
- Sousa, F.S.; Oishi, C.M.; Buscaglia, G.C. Spurious transients of projection methods in microflow simulations. Comput. Methods Appl. Mech. Eng. 2015, 285, 659–693. [Google Scholar] [CrossRef]
- Elman, H.; Howle, V.; Shadid, J.; Shuttleworth, R.; Tuminaro, R. A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations. J. Comput. Phys. 2008, 227, 1790–1808. [Google Scholar] [CrossRef] [Green Version]
- Elman, H.C.; Silvester, D.J.; Wathen, A.J. Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Davis, T.A.; Hager, W.W. Dynamic Supernodes in Sparse Cholesky Update/Downdate and Triangular Solves. ACM Trans. Math. Softw. 2009, 35, 27:1–27:23. [Google Scholar] [CrossRef]
- Golub, G.H.; Loan, C.F.V. Matrix Computations, 4th ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2012. [Google Scholar]
- Gee, M.; Siefert, C.; Hu, J.; Tuminaro, R.; Sala, M. ML 5.0 Smoothed Aggregation User’s Guide; Technical Report SAND2006-2649; Sandia National Laboratories: Livermore, CA, USA, 2006. [Google Scholar]
- Pask, J.; Klein, B.; Sterne, P.; Fong, C. Finite-element methods in electronic-structure theory. Comput. Phys. Commun. 2001, 135, 1–34. [Google Scholar] [CrossRef]
- Sukumar, N.; Pask, J.E. Classical and enriched finite element formulations for Bloch-periodic boundary conditions. Int. J. Numer. Methods Eng. 2009, 77, 1121–1138. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Pozrikidis, C. The flow of suspensions in channels: Single files of drops. Phys. Fluids 1993, 5, 311–324. [Google Scholar] [CrossRef]
- Afkhami, S.; Yue, P.; Renardy, Y. A comparison of viscoelastic stress wakes for two-dimensional and three-dimensional Newtonian drop deformations in a viscoelastic matrix under shear. Phys. Fluids 2009, 21, 072106. [Google Scholar] [CrossRef] [Green Version]
- Balla, M.; Kavuri, S.; Tripathi, M.K.; Sahu, K.C.; Govindarajan, R. Effect of viscosity and density ratios on two drops rising side by side. Phys. Rev. Fluids 2020, 5, 013601. [Google Scholar] [CrossRef]
- Hassager, O. Negative wake behind bubbles in non-Newtonian liquids. Nature 1979, 279, 402–403. [Google Scholar] [CrossRef] [PubMed]
- Prieto, J.L.; Carpio, J. A-SLEIPNNIR: A multiscale, anisotropic adaptive, particle level set framework for moving interfaces. Transport equation applications. J. Comput. Phys. 2019, 377, 89–116. [Google Scholar] [CrossRef]
Density Ratio | ||||
---|---|---|---|---|
10 | 150,000/5000 | 75,000/10,000 | 50,000/15,000 | 37,500/20,000 |
1000 | 150,000/5000 | 50,000/15,000 | 15,000/50,000 | 15,000/5000 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto, J.L. Viscoelastic Effects on Drop Deformation Using a Machine Learning-Enhanced, Finite Element method. Polymers 2020, 12, 1652. https://doi.org/10.3390/polym12081652
Prieto JL. Viscoelastic Effects on Drop Deformation Using a Machine Learning-Enhanced, Finite Element method. Polymers. 2020; 12(8):1652. https://doi.org/10.3390/polym12081652
Chicago/Turabian StylePrieto, Juan Luis. 2020. "Viscoelastic Effects on Drop Deformation Using a Machine Learning-Enhanced, Finite Element method" Polymers 12, no. 8: 1652. https://doi.org/10.3390/polym12081652
APA StylePrieto, J. L. (2020). Viscoelastic Effects on Drop Deformation Using a Machine Learning-Enhanced, Finite Element method. Polymers, 12(8), 1652. https://doi.org/10.3390/polym12081652