An Improved Physical-Stochastic Model for Simulating Electrical Tree Propagation in Solid Polymeric Dielectrics
Abstract
:1. Introduction
2. Materials and Methods
3. Brief Review of Current Models for Simulating the Propagation of Electrical Trees in Solid Dielectrics
- Stochastic,
- Physical,
- Empirical,
- Deterministic,
- Multiphysical, and
- Cellular Automata.
3.1. Stochastic Models
3.2. Physical Models
3.3. Empirical Models
3.4. Deterministic Models
3.5. Multiphysical Models
3.6. Cellular Automata Models
4. A Novel Improved Physical-Stochastic Model for Simulating Tree Propagation in Polymeric Materials
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Takuma, T.; Techaumnat, B. Electric Fields in Composite Dielectrics and Their Applications, 1st ed.; Power Systems; Springer: Berlin, Germany, 2010; ISBN 978-90-481-9391-2. [Google Scholar]
- Ahmad, M.H.; Bashir, N.; Ahmad, H.; Abd Jamil, A.A.; Suleiman, A.A. An Overview of Electrical Tree Growth in Solid Insulating Material with Emphasis of Influencing Factors, Mathematical Models and Tree Suppression. TELKOMNIKA Indonesian J. Electrical Eng. 2014, 12, 5827–5846. [Google Scholar] [CrossRef]
- Seralathan, K.E.; Mahajan, A.; Gupta, N. Modelling of electric tree progression due to space charge modified fields. J. Phys. D Appl. Phys. 2008, 41, 105501. [Google Scholar] [CrossRef]
- Dissado, L.A.; Fothergill, J.C. Electrical Degradation and Breakdown in Polymers, 1st ed.; IET: London, UK, 1992; ISBN 978-1-84919-363-4. [Google Scholar]
- Sweeney, P.J.J.; Dissado, L.A.; Cooper, J.M. Simulation of the effect of barriers upon electrical tree propagation. J. Phys. D Appl. Phys. 1992, 25, 113–119. [Google Scholar] [CrossRef]
- Champion, J.V.; Dodd, S.J.; Alison, J.; Askew, L. Electrical tree growth and space charge behaviour of epoxy resin blends. In Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics ICSD’98. (Cat. No.98CH36132), Vasteras, Sweden, 22–25 June 1998; pp. 321–324. [Google Scholar]
- Guastavino, F.; Cerutti, B. Tree growth monitoring by means of digital partial discharge measurements. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 65–72. [Google Scholar] [CrossRef]
- Albarracín, R.; Robles, G.; Ardila-Rey, J.A.; Cavallini, A.; Passaglia, R. Partial discharges: Keys for condition monitoring and diagnosis of power transformers. In Power Transformer Condition Monitoring and Diagnosis; Abu-Siada, A., Ed.; IET: London, UK, 2018; pp. 39–85. ISBN 978-1-78561-254-1. [Google Scholar]
- Laurent, C.; Mayoux, C.; Sergent, A. Electrical Breakdown Due to Discharges in Different Types of Insulation. IEEE Trans. Electr. Insul. 1981, EI-16, 52–58. [Google Scholar] [CrossRef]
- Quiña, P.L.D.; Herrera, L.; Irurzun, I.M.; Mola, E.E. A capacitive model for dielectric breakdown in polymer materials. Comput. Mater. Sci. 2008, 44, 330–338. [Google Scholar] [CrossRef]
- Izzati, W.A.; Arief, Y.Z.; Adzis, Z.; Shafanizam, M. Partial Discharge Characteristics of Polymer Nanocomposite Materials in Electrical Insulation: A Review of Sample Preparation Techniques, Analysis Methods, Potential Applications, and Future Trends. Sci. World J. 2014, 2014, 1–14. [Google Scholar] [CrossRef]
- Pleşa, I.; Noţingher, P.V.; Schlögl, S.; Sumereder, C.; Muhr, M. Properties of Polymer Composites Used in High-Voltage Applications. Polymers 2016, 8, 173. [Google Scholar] [CrossRef]
- Tanaka, T.; Montanari, G.C.; Mulhaupt, R. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 763–784. [Google Scholar] [CrossRef]
- Ismail, N.H.; Mustapha, M. A review of thermoplastic elastomeric nanocomposites for high voltage insulation applications. Polym. Eng. Sci. 2018, 58, E36–E63. [Google Scholar] [CrossRef]
- Liu, B.; Yang, M.; Zhou, W.-Y.; Cai, H.-W.; Zhong, S.-L.; Zheng, M.-S.; Dang, Z.-M. High energy density and discharge efficiency polypropylene nanocomposites for potential high-power capacitor. Energy Storage Mater. 2020, 27, 443–452. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, P. Core–Shell Structured High-k Polymer Nanocomposites for Energy Storage and Dielectric Applications. Adv. Mater. 2015, 27, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.Q. Review of Polymer-Based Nanodielectric Exploration and Film Scale-Up for Advanced Capacitors. Adv. Funct. Mater. 2020, 30, 1808567. [Google Scholar] [CrossRef]
- Patsch, R. Electrical and water treeing: A chairman’s view. IEEE Trans. Electr. Insul. 1992, 27, 532–542. [Google Scholar] [CrossRef]
- McMahon, E.J.; Perkins, J.R. Evaluation of Polyolefin High-Voltage Insulating Compounds; Dendrite (Tree) Formation Under Highly Divergent Fields. IEEE Trans. Power App. Syst. 1964, 83, 1253–1260. [Google Scholar] [CrossRef]
- ElMoslemany, M.A.; Zaky, A.A.; Megahed, I.Y. Communication Some Observations on Tree Patterns in Pmma Under Alternating Voltages. IEEE Trans. Electr. Insul. 1982, EI-17, 76–80. [Google Scholar] [CrossRef]
- Quiña, P.L.D.; Irurzun, I.M.; Salvatierra, L.M.; Mola, E.E. Field fluctuations and fractality in electrical breakdown trees. Phys. Rev. E 2010, 82, 041106. [Google Scholar] [CrossRef]
- Champion, J.V.; Dodd, S.J.; Stevens, G.C. Analysis and modelling of electrical tree growth in synthetic resins over a wide range of stressing voltage. J. Phys. D Appl. Phys. 1994, 27, 1020–1030. [Google Scholar] [CrossRef]
- Naidu, M.S.; Kamaraju, V. High Voltage Engineering, 3rd ed.; Tata McGraw-Hill Education: New Delhi, India, 2004; ISBN 978-0-07-049464-0. [Google Scholar]
- Gaviria Ortiz, Á. Teoría electromagnética: Proposiciones y soluciones; Universidad de Antioquia: Medellín, Colombia, 2004; ISBN 978-958-655-505-0. [Google Scholar]
- Noskov, M.D.; Kukhta, V.R.; Lopatin, V.V. Simulation of the electrical discharge development in inhomogeneous insulators. J. Phys. D Appl. Phys. 1995, 28, 1187–1194. [Google Scholar] [CrossRef]
- Fothergill, J.C.; Dissado, L.A.; Sweeney, P.J.J. A discharge-avalanche theory for the propagation of electrical trees. A physical basis for their voltage dependence. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 474–486. [Google Scholar] [CrossRef]
- Niemeyer, L.; Pietronero, L.; Wiesmann, H.J. Fractal Dimension of Dielectric Breakdown. Phys. Rev. Lett. 1984, 52, 1033–1036. [Google Scholar] [CrossRef]
- Barclay, A.L.; Sweeney, P.J.; Dissado, L.A.; Stevens, G.C. Stochastic modelling of electrical treeing: Fractal and statistical characteristics. J. Phys. D Appl. Phys. 1990, 23, 1536. [Google Scholar] [CrossRef]
- Wiesmann, H.J.; Zeller, H.R. A fractal model of dielectric breakdown and prebreakdown in solid dielectrics. In Proceedings of the Conference on Electrical Insulation Dielectric Phenomena-Annual Report 1986, Claymont, DE, USA, 2–6 November 1986; pp. 385–390. [Google Scholar]
- Zeller, H.R. Breakdown and Prebreakdown Phenomena in Solid Dielectrics. IEEE Trans. Electr. Insul. 1987, EI-22, 115–122. [Google Scholar] [CrossRef]
- Farr, T.; Vogelsang, R.; Frohlich, K. A new deterministic model for tree growth in polymers with barriers. In Proceedings of the 2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.01CH37225), Kitchener, ON, Canada, 14–17 October 2001; pp. 673–676. [Google Scholar]
- Bahder, G.; Garrity, T.; Sosnowski, M.; Eaton, R.; Katz, C. Physical Model of Electric Aging and Breakdown of Extruded Polymeric Insulated Power Cables. IEEE Trans. Power App. Syst. 1982, PAS-101, 1379–1390. [Google Scholar] [CrossRef]
- Dissado, L.A.; Sweeney, P.J.J. An analytical model for discharge generated breakdown structures. In Proceedings of the 4th International Conference on Conduction and Breakdown in Solid Dielectrics, Sestri Levante, Italy, 22–25 June 1992; pp. 328–332. [Google Scholar]
- Hozumi, N.; Okamoto, T. The initiation and growth of AC tree in polyethylene. In Proceedings of the 3rd International Conference on Conduction and Breakdown in Solid Dielectrics, Trondheim, Norway, 3–6 July 1989; pp. 543–547. [Google Scholar]
- Dissado, L.A.; Dodd, S.J.; Champion, J.V.; Williams, P.I.; Alison, J.M. Propagation of electrical tree structures in solid polymeric insulation. IEEE Trans. Dielectr. Electr. Insul. 1997, 4, 259–279. [Google Scholar] [CrossRef]
- Noto, F.; Yoshimura, N. Voltage and frequency dependence of tree growth in polyethylene. In Proceedings of the Conference on Electrical Insulation Dielectric Phenomena—Annual Report 1974, Downingtown, PA, USA, 21–23 October 1974; pp. 207–217. [Google Scholar]
- Champion, J.V.; Dodd, S.J. The effect of voltage and material age on the electrical tree growth and breakdown characteristics of epoxy resins. J. Phys. D Appl. Phys. 1995, 28, 398–407. [Google Scholar] [CrossRef]
- Dodd, S.J. A deterministic model for the growth of non-conducting electrical tree structures. J. Phys. D Appl. Phys. 2002, 36, 129–141. [Google Scholar] [CrossRef]
- Noskov, M.; Lopatin, V.; Cheglokov, A.; Shapovalov, A. Computer simulation of discharge channel propagation in solid dielectric. In Proceedings of the IEEE 7th International Conference on Solid Dielectrics ICSD’01. (Cat. No.01CH37117), Eindhoven, The Netherlands, 25–29 June 2001; pp. 465–468. [Google Scholar]
- Wildman, R.; Gazonas, G. A dynamic electro-thermo-mechanical model of dielectric breakdown in solids using peridynamics. J. Mech. Mater. Struct. 2015, 10, 613–630. [Google Scholar] [CrossRef]
- Ding, H.-Z.; Varlow, B.R. A new model for propagation of electrical tree structures in polymeric insulation. In Proceedings of the Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Cancun, Mexico, 20–24 October 2002; pp. 934–937. [Google Scholar]
- Ding, H.-Z.; Varlow, B.R. Electrical tree growth retardation and acceleration model. In Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No.03CH37417), Nagoya, Japan, 1–5 June 2003; Volume 1, pp. 423–426. [Google Scholar]
- Chopard, B. Cellular Automata Modeling of Physical Systems. In Computational Complexity: Theory, Techniques, and Applications; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2012; pp. 407–433. ISBN 978-1-4614-1800-9. [Google Scholar]
- Danikas, M.G.; Karafyllidis, I.; Thanailakis, A.; Bruning, A.M. Simulation of electrical tree growth in solid dielectrics containing voids of arbitrary shape. Modelling Simul. Mater. Sci. Eng. 1996, 4, 535. [Google Scholar] [CrossRef]
- Vardakis, G.E.; Danikas, M.G.; Karafyllidis, I. Simulation of space-charge effects in electrical tree propagation using cellular automata. Mater. Lett. 2002, 56, 404–409. [Google Scholar] [CrossRef]
- Vardakis, G.E.; Danikas, M.G. Simulation of electrical tree propagation using cellular automata: The case of conducting particle included in a dielectric in point-plane electrode arrangement. J. Electr. 2005, 63, 129–142. [Google Scholar] [CrossRef]
- Pitsa, D.; Vardakis, G.; Danikas, M.; Kozako, M. Electrical Treeing Propagation in Nanocomposites and the Role of Nanofillers: Simulationwith the Aid of Cellular Automata. J. Electr. Eng. 2010, 61, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.; Rowland, S.M.; Chen, S.; Zheng, H.; Iddrissu, I. Evolution of partial discharges during early tree propagation in epoxy resin. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2995–3003. [Google Scholar] [CrossRef]
- Schurch, R.; Rowland, S.M.; Bradley, R.S. Partial discharge energy and electrical tree volume degraded in epoxy resin. In Proceedings of the 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Ann Arbor, MI, USA, 18–21 October 2015; pp. 820–823. [Google Scholar]
- Callender, G. Modelling Partial Discharge in Gaseous Voids. Ph.D. Thesis, University of Southampton, Southamptom, UK, 2018. [Google Scholar]
- Hozumi, N.; Okamoto, T.; Fukagawa, H. Simultaneous Measurement of Microscopic Image and Discharge Pulses at the Moment of Electrical Tree Initiation. Jpn. J. Appl. Phys. 1988, 27, 572. [Google Scholar] [CrossRef]
- Kuffel, E.; Zaengl, W.S.; Kuffel, J. High Voltage Engineering Fundamentals, 2nd ed.; Elsevier: Oxford, UK, 2000; ISBN 978-0-7506-3634-6. [Google Scholar]
- Dissado, L.A.; Sweeney, P.J.J. Physical model for breakdown structures in solid dielectrics. Phys. Rev. B 1993, 48, 16261–16268. [Google Scholar] [CrossRef]
- Stacey, G.; Kinsner, W. Tuning of the stochastic model of dielectric discharges. In Proceedings of the IEEE WESCANEX 95. Communications, Power, and Computing., Winnipeg, MB, Canada, 15–16 May 1995; Volume 2, pp. 318–320. [Google Scholar]
- Dissado, L.A.; Dodd, S.J.; Champion, J.V.; Williams, P.I.; Alison, J.M. Electrical tree propagation: From stochastic models to a quantitative physical description. In Proceedings of the 1995 IEEE 5th International Conference on Conduction and Breakdown in Solid Dielectrics, Leicester, UK, 10–13 July 1995; pp. 16–22. [Google Scholar]
- Lv, Z.; Rowland, S.M.; Chen, S.; Zheng, H. Modelling and simulation of PD characteristics in non-conductive electrical trees. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2250–2258. [Google Scholar] [CrossRef]
- Lv, Z.; Rowland, S.M.; Chen, S.; Zheng, H.; Wu, K. Modelling of partial discharge characteristics in electrical tree channels: Estimating the PD inception and extinction voltages. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1999–2010. [Google Scholar] [CrossRef]
- Kudo, K. Fractal analysis of electrical trees. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 713–727. [Google Scholar] [CrossRef]
- Kai, W.; Zhang, C.; Wu, G.; Xie, H. A new fractal model for describing time-dependence of treeing growth. In Proceedings of the 1995 International Symposium on Electrical Insulating Materials, Tokyo, Japan, 17–20 September 1995; pp. 157–160. [Google Scholar]
- Lawless, J. Statistical Models and Methods for Lifetime Data, 2nd ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-1-118-03125-4. [Google Scholar]
- Rodríguez-Serna, J.M.; Albarracín-Sánchez, R.; Mas’ud, A.A. Finite-element-analysis models for numerical simulation of partial discharges in spherical cavities within solid dielectrics: A review and a novel method. High Voltage 2020. accepted. [Google Scholar] [CrossRef]
- Champion, J.V.; Dodd, S.J. Simulation of partial discharges in conducting and non-conducting electrical tree structures. J. Phys. D Appl. Phys. 2001, 34, 1235–1242. [Google Scholar] [CrossRef]
Parameter | Description |
---|---|
(m) | Mean free path, depends on the material and experimental conditions, for polymers 60–120 nm [21] |
(eV) | Ionization energy, depends on the material, for polymers 8–10 eV [53] |
Relative conductivity of the tree channels—0 for non-conductive channels and 1 for highly conductive channels [25]. Depends on the material and experimental conditions [56] | |
Relative permittivity of media, depends on the materials. It is assumed that the tree channel and solid dielectric have the same permittivity | |
Critical number of avalanches per half cycle and electron is considered a random magnitude from the Gaussian distribution truncated at the maximum value of Nc/Nb = 1 × 108 [33] | |
(V·m−1) | Critical magnitude of electric field strength for tree propagation, depends on the material [37]. Also can be calculated from Equation (9) |
Power for stochastic model (0–2), depends on the experimental conditions [27,29,30] |
Voltage (kV RMS) | I (eV) | λ (nm) | Nc/Nb | Ec (kV·mm−1) | εr | η |
---|---|---|---|---|---|---|
7 | 8 | 60 | 1 × 107 | 14 | 4 | 1 |
10 | 8 | 60 | 4 × 108 | 14 | 4 | 1.8 |
15 | 8 | 60 | 4 × 108 | 14 | 4 | 1 |
Voltage (kV RMS) | Df-sim | Df-M | ΔDf (%) |
---|---|---|---|
7 | 1.55 | 1.65 | 6.06 |
10 | 1.50 | 1.55 | 3.23 |
15 | 1.64 | 1.66 | 1.21 |
Voltage (kV RMS) | β | αt (s) | tmin (s) | tmax (s) | tmean (s) | tmeas (s) | Δtm (%) |
---|---|---|---|---|---|---|---|
7 | 8.3 < 10.4 < 12.9 | 5576.9 < 5735.4 < 5898.5 | 4211.2 | 6589.6 | 5457.6 | 5329.4 | 2.4 |
10 | 4.5 < 5.6 < 6.9 | 3457.2 < 3644.5 < 3842.0 | 2262.1 | 4881.1 | 3370.3 | 3404.3 | 0.9 |
15 | 6.6 < 8.1 < 9.9 | 2813.0 < 2916.9 < 3024.6 | 2074.0 | 3577.2 | 2753.7 | 2812.1 | 2.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Serna, J.M.; Albarracín-Sánchez, R.; Carrillo, I. An Improved Physical-Stochastic Model for Simulating Electrical Tree Propagation in Solid Polymeric Dielectrics. Polymers 2020, 12, 1768. https://doi.org/10.3390/polym12081768
Rodríguez-Serna JM, Albarracín-Sánchez R, Carrillo I. An Improved Physical-Stochastic Model for Simulating Electrical Tree Propagation in Solid Polymeric Dielectrics. Polymers. 2020; 12(8):1768. https://doi.org/10.3390/polym12081768
Chicago/Turabian StyleRodríguez-Serna, Johnatan M., Ricardo Albarracín-Sánchez, and Isabel Carrillo. 2020. "An Improved Physical-Stochastic Model for Simulating Electrical Tree Propagation in Solid Polymeric Dielectrics" Polymers 12, no. 8: 1768. https://doi.org/10.3390/polym12081768
APA StyleRodríguez-Serna, J. M., Albarracín-Sánchez, R., & Carrillo, I. (2020). An Improved Physical-Stochastic Model for Simulating Electrical Tree Propagation in Solid Polymeric Dielectrics. Polymers, 12(8), 1768. https://doi.org/10.3390/polym12081768