Thermal Degradation Processes of Aromatic Poly(Ether Sulfone) Random Copolymers Bearing Pendant Carboxyl Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Methods of Analysis
3. Results and Discussion
3.1. Thermogravimetry
3.2. Direct Pyrolysis in Mass Spectrometry
3.3. Py-GC/MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Maes, C.; Devaux, J.; Legras, R.; Parsons, I.W.; McGrail, P.T. Characterization of novel modified amorphous poly (ether sulphone)s. J. Polym. Sci. Part A Polym. Chem. 1994, 32, 3171–3182. [Google Scholar] [CrossRef]
- Sugama, T.; Carciello, N.R. Polyphenyletherketone and polyphenylethersulphone adhesive for metal-to-metal joints. Int. J. Adhes. Adhes. 1993, 13, 257–266. [Google Scholar] [CrossRef]
- Pinnau, I.; Koros, J.W. Structues and gas separation properties of asymmetric polysulfone membrane made by dry, wet, and dry wet phase inversion. J. Appl. Polym. Sci. 1991, 43, 1491–1502. [Google Scholar] [CrossRef]
- Dizman, C.; Tasdelen, M.A.; Yagci, Y. Recent advances in the preparation of functionalized polysulfones. Polym. Int. 2013, 62, 991–1007. [Google Scholar] [CrossRef]
- McGrail, P.T. Polyaromatics. Polym. Int. 1996, 41, 103–121. [Google Scholar] [CrossRef]
- Kim, B.S.; Chiba, T.; Inoue, T. Morphology development via reaction-induced phase separation in epoxy/poly(ether sulfone) blends: Morphology control using poly(ether sulfone) with functional end-groups. Polymer 1995, 36, 43–47. [Google Scholar] [CrossRef]
- Blanco, I.; Cicala, G.; Vigliotta, G.; Recca, A. Influence of a selected hardener on the phase separation in epoxy/thermoplastic polymer blends. J. Appl. Polym. Sci. 2004, 94, 361–371. [Google Scholar] [CrossRef]
- Puglisi, C.; Samperi, F.; Cicala, G.; Recca, A.; Restuccia, C.L. Combined MALDI–TOF MS and NMR characterization of copoly(arylen ether sulphone)s. Polymer 2006, 47, 1861–1874. [Google Scholar] [CrossRef]
- Abate, L.; Blanco, I.; Cicala, G.; La Spina, R.; Restuccia, C.L. Thermal and rheological behaviour of some random aromatic polyethersulfone/polyethersulfone copolymers. Polym. Degrad. Stab. 2006, 91, 924–930. [Google Scholar] [CrossRef]
- Abate, L.; Blanco, I.; Cicala, G.; Recca, A.; Restuccia, C.L. Thermal and rheological behaviours of some random aromatic amino-ended polyethersulfone/polyetherethersulfone copolymers. Polym. Degrad. Stab. 2006, 91, 3230–3236. [Google Scholar] [CrossRef]
- Kim, J.-P.; Lee, W.-Y.; Kang, J.-W.; Kwon, S.-K.; Kim, J.-J.; Lee, J.-S. Fluorinated Poly(arylene ether sulfide) for Polymeric Optical Waveguide Devices. Macromolecules 2001, 34, 7817–7821. [Google Scholar] [CrossRef]
- Theil, F. Synthesis of Diaryl Ethers: A Long-Standing Problem Has Been Solved. Angew. Chem. Int. Ed. 1999, 38, 2345–2347. [Google Scholar] [CrossRef]
- Samperi, F.; Puglisi, C.; Ferreri, T.; Messina, R.; Cicala, G.; Recca, A.; Restuccia, C.L.; Scamporrino, A. Thermal decomposition products of copoly(arylene ether sulfone)s characterized by direct pyrolysis mass spectrometry. Polym. Degrad. Stab. 2007, 92, 1304–1315. [Google Scholar] [CrossRef]
- Weber, M.; Rajak, A.K.; Maletzko, C. Polyethersulfone Block Copolymers for Membrane Applications. Macromol. Chem. Phys. 2019, 220, 1–10. [Google Scholar] [CrossRef]
- Naderi, A.; Yong, W.F.; Xiao, Y.; Chung, T.-S.; Weber, M.; Maletzko, C. Effects of chemical structure on gas transport properties of polyethersulfone polymers. Polymer 2018, 135, 76–84. [Google Scholar] [CrossRef]
- Koch, T.; Ritter, H. Functionalized polysulfones from 4,4-bis(4-hydroxyphenyl)pentanoic acid, 2,2-isopropylidenediphenol and bis(4-chlorophenyl) sulfone: Synthesis, behaviour and polymer analogous amidation of the carboxylic groups. Macromol. Chem. Phys. 1994, 195, 1709–1717. [Google Scholar] [CrossRef]
- Esser, I.C.; Parsons, I.W. Modified poly(ether sulfone)/poly(ether ether sulfone) polymers: Approaches to pendent carboxyl groups. Polymer 1993, 34, 2836–2844. [Google Scholar] [CrossRef]
- Weisse, H.; Keul, H.; Höcker, H. A new route to carboxylated poly(ether sulfone)s: Synthesis and characterization. Polymer 2001, 42, 5973–5978. [Google Scholar] [CrossRef]
- Ganesh, S.D.; Harish, M.N.K.; Madhu, B.J.; Maqbool, H.; Pai, K.V.; Kariduraganavar, M.Y. Poly(Arylene Ether Sulfone)s with HEPES Pendants: Synthesis, Thermal, and Dielectric Studies. ISRN Polym. Sci. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Vakhtangishvili, L.; Fritsch, D. Synthesis and functionalization of poly(ether sulfone)s based on 1,1,1-tris(4-hydroxyphenyl)ethane. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 2967–2978. [Google Scholar] [CrossRef]
- Alenazi, N.A.; Hussein, M.A.; Alamry, K.A.; Asiri, A.M. Modified polyether-sulfone membrane: A mini review. Des. Monomers Polym. 2017, 20, 532–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scamporrino, A.; Samperi, F.; Zampino, D.; Dattilo, S.; Puglisi, C.; Spina, A. Synthesis and characterization of PES copolymers with carboxyl units as metal recovering materials. In The Fiftieth Anniversary of the Institute for Polymers Composites and Biomaterials; Consiglio Nazionale delle Ricerche: Rome, Italy, 2019; p. 87. ISBN 9788880803652. [Google Scholar]
- Montaudo, G.; Puglisi, C. Mass Spectrometry of Polymers; Montaudo, G., Lattimer, R.P., Eds.; CRC Press: Boca Raton, FL, USA, 2002; Chapter 5; p. 181. [Google Scholar]
- Montaudo, G.; Puglisi, C.; Rapisardi, R.; Samperi, F. Primary thermal degradation processes of poly(ether-sulfone) and poly(phenylene oxide) investigated by direct pyrolysis-mass spectrometry. Macromol. Chem. Phys. 1994, 195, 1225–1239. [Google Scholar] [CrossRef]
- Montaudo, G.; Puglisi, C.; Samperi, F. Primary thermal degradation processes of poly(ether/ketone) and poly(ether ketone)/poly(ether-sulfone) copolymers investigated by direct pyrolysis-mass spectrometry. Macromol. Chem. Phys. 1994, 195, 1241–1256. [Google Scholar] [CrossRef]
- Molnár, G.; Botvay, A.; Pöppl, L.; Torkos, K.; Borossay, J.; Máthé, Á.; Török, T. Thermal degradation of chemically modified polysulfones. Polym. Degrad. Stab. 2005, 89, 410–417. [Google Scholar] [CrossRef]
- Perng, L.-H. Comparison of thermal degradation characteristics of poly(arylene sulfone)s using thermogravimetric analysis/mass spectrometry. J. Appl. Polym. Sci. 2001, 81, 2387–2398. [Google Scholar] [CrossRef]
- Perng, L.-H. Thermal degradation mechanism of poly(arylene sulfone)s by stepwise Py-GC/MS. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 583–593. [Google Scholar] [CrossRef]
- Gupta, Y.N.; Chakraborty, A.; Pandev, G.D.; Setua, D.K. Thermal and oxidative degradation of engineering thermoplastics and life estimation. J. Appl. Polym. Sci. 2004, 92, 1737–1748. [Google Scholar] [CrossRef]
- Lakshmi, M.R.T.S.; Kumari, R.; Varma, J.K. Structure and thermal characterization of poly(arylene ether sulphone)s. J. Therm. Anal. Calorim. 2004, 78, 809–819. [Google Scholar] [CrossRef]
- Ohtani, H.; Ishida, Y.; Ushiba, M.; Tsuge, S. Thermally assisted hydrolysis and methylation-gas chromatography of poly(aryl ether sulfone)s in the presence of tetramethylammonium htdroxide. J. Anal. Appl. Pyrolysis 2001, 61, 35–44. [Google Scholar] [CrossRef]
- Ellison, S.T.; Gies, A.P.; Hercules, D.M.; Morgan, S.L. Py−GC/MS and MALDI−TOF/TOF CID Study of Polysulfone Fragmentation Reactions. Macromolecules 2009, 42, 3005–3013. [Google Scholar] [CrossRef]
- Ellison, S.T.; Gies, A.P.; Hercules, D.M.; Morgan, S.L. Py-GC/MS and MALDI-TOF/TOF CID Study of Poly(phenyl sulfone) Fragmentation Reactions. Macromolecules 2009, 42, 5526–5533. [Google Scholar] [CrossRef]
- Rodewald, B.; Ritter, H. Oligo(ether-sulfones), 2. Synthesis of a novel macrocyclic aromatic ether sulfone bearing two carboxylic groups and the corresponding polyamide via direct condensation of the macrocycle with 4,4′-diaminodiphenylmethane. Macromol. Rapid Commun. 1997, 18, 817–825. [Google Scholar] [CrossRef]
- Ritter, H.; Rodewald, B. Oligo(Ether-Sulfones). 1. Functionalized Oligo(Ether-Sulfones) from 4,4-Bis(4-Hydroxyphenyl)-Pentanoic Acid AndBis(4-Chlorophenyl)Sulfone: Synthesis, Properties, and Substitution of the Chlorophenyl-Endgroups. J. Macromol. Sci. Part A 1996, 33, 103–115. [Google Scholar] [CrossRef]
- Lu, Z.; Li, J.; Hua, J.; Li, X.; Qin, J.; Qin, A.; Ye, C. Two new poly(arylene ether sulfone)s containing second-order nonlinear optical chromophores. Synth. Met. 2005, 152, 217–220. [Google Scholar] [CrossRef]
- Scamporrino, A.A.; Puglisi, C.; Spina, A.; Montaudo, M.; Zampino, D.C.; Cicala, G.; Ognibene, G.; Di Mauro, C.; Dattilo, S.; Mirabella, E.F.; et al. Synthesis and Characterization of copoly(ether sulfone)s with different percentages of diphenolic acid units. Polymers 2020. submitted. [Google Scholar]
- Cottrell, T.L. The Strengths of Chemical Bonds, 2nd ed.; Academic Press, Inc.: London, UK, 1958; pp. 242–243. [Google Scholar]
- Kiran, E.; Gillham, J.K.; Gipstein, E. Pyrolysis molecular weight chromatography vapor-phase IR spectrotometry-online system for analysis of polymers. 3. Thermal-Decomposition of polysulfones and polystyrene. J. Appl. Polym. Sci. 1977, 21, 1159–1176. [Google Scholar] [CrossRef]
- Zeng, H.; Zhao, J.; Xiao, X. Quantum chemical calculations of bond dissociation energies for COOH scission and electronic structure in some acids. Chin. Phys. B 2013, 22, 023301. [Google Scholar] [CrossRef]
Samples | Ti (°C) (a) | T1/2 (°C) (b) | Tmax 1 (°C) (c) | Tmax 2 (°C) (c) | R (%) (d) | |
---|---|---|---|---|---|---|
1 | P(ESES) | 487 | 577 | n.d. | 566 | 35.4 |
2 | P(ESES-co-ESDPA) 90:10 | 392 | 550 | 420 | 512 | 34.3 |
3 | P(ESES-co-ESDPA) 80:20 | 391 | 547 | 425 | 510 | 34.5 |
4 | P(ESES-co-ESDPA) 70:30 | 390 | 545 | 425 | 510 | 34.5 |
5 | P(ESES-co-ESDPA) 50:50 | 395 | 519 | 435 | 493 | 34.1 |
6 | P(ESES-co-ESDPA) 30:70 | 392 | 514 | 439 | 495 | 33.4 |
7 | P(ESDPA) | 382 | 515 | 437 | 495 | 32.4 |
Structure | n | M+ | (M-64) | (M-66) | Samples (a) | ||||
---|---|---|---|---|---|---|---|---|---|
1 | 7 | 4 | 5 | 6 | |||||
H–[Ph–SO2–Ph–O]n–Ph–H | 1 | 310 | + | - | - | - | - | ||
2 | 542 | 478 | |||||||
HO–[Ph–SO2–Ph–O]n–Ph–H | 0 | 94 | 262 | + | - | - | - | - | |
1 | 326 | 494 | |||||||
2 | |||||||||
HO–[Ph–SO2–Ph–O]n–H | 1 | 250 | 186 | 184 | + | - | - | - | - |
2 | 482 | 418 | |||||||
H–[Ph–SO2–Ph–O]n–H | 1 | 234 | 170 | 168 | + | - | - | - | - |
2 | 466 | 402 | |||||||
HO–[Ph–SO2–Ph–O]n–Ph–OH | 0 | 110 | + | - | - | - | - | ||
1 | 342 | 278 | 276 | ||||||
0 | 126 | + | - | - | - | - | |||
1 | 358 | 294 | |||||||
H–Ph–SO2–Ph+ | 217 | + | - | - | - | - | |||
H–Ph–SO2+ | 141 | + | - | - | - | - | |||
HO–Ph–SO2+ | 157 | + | - | - | - | - | |||
Ph+ | 77 | + | - | - | - | - | |||
HO–Ph–O–Ph+ | 185 | + | - | - | - | - | |||
H–Ph–SO2–Ph–H | 217 | + | - | + | + | + | |||
CH2=CH–+CH–CH3 | 55 | - | + | + | + | + | |||
SO2 | 64 | + | + | + | + | + | |||
CO2 | 44 | - | + | + | + | + | |||
HO–Ph–CH2+ | 107 | - | + | + | + | + | |||
HO–Ph–+CH–CH3 | 121 | - | + | + | + | + | |||
165 | - | + | + | + | + | ||||
129 | - | + | + | + | + | ||||
152 | - | + | + | + | + | ||||
181 | - | + | + | + | + | ||||
195 | - | + | + | + | + | ||||
197 | - | + | + | + | + | ||||
210 | - | + | + | + | + | ||||
HO–Ph–+CH–Ph–O–Ph–H | 275 | - | + | + | + | + | |||
HO–Ph–+CH–Ph–O–Ph–SO2–Ph–OH | 431 | - | + | + | + | + | |||
464 | + | - | - | - | - | ||||
289 | - | + | + | + | + | ||||
351 | - | + | + | + | + | ||||
365 | - | + | + | + | + | ||||
445 | - | + | + | + | + | ||||
449 | - | + | + | + | + | ||||
463 | - | + | + | + | + | ||||
540 | - | + | + | + | + | ||||
540 | - | + | + | + | + | ||||
525 | - | + | + | + | + | ||||
507 | - | + | + | + | + | ||||
H–Ph–+CH–Ph–O–Ph–SO2–Ph–O–Ph–H | 491 | - | + | + | + | + | |||
521 | - | + | + | + | + | ||||
357 | - | + | + | + | + | ||||
371 | - | + | + | + | + | ||||
384 | - | + | + | + | + | ||||
Pyrolysis Product 500 °C | Peak Number | Mass (m/z) |
---|---|---|
SO2 | 1 | 64 |
Phenol | 2 | 94 |
diphenyl ether | 3 | 170 |
Dibenzofuran | 4 | 168 |
4-hydroxy diphenyl sulfide | 5 | 202 |
Pyrolysis product (fragmentation process Scheme 3) | 7 | 246 |
Pyrolysis product (fragmentation process Scheme 2 and Scheme 3) | 8 | 262 |
4-phenoxy-dibenzofuran | 9 | 260 |
Pyrolysis product (fragmentation process Scheme 2 and Scheme 3) | 10 | 278 |
Pyrolysis product (fragmentation process Scheme 2 and Scheme 3) | 11 | 294 |
Pyrolysis product (fragmentation process Scheme 2) | 13 | 326 |
Pyrolysis product (fragmentation process Scheme 2) | 14 | 310 |
Pyrolysis product (fragmentation process Scheme 2) | 15 | 338 |
Pyrolysis product (fragmentation process Scheme 2) | 16 | 344 |
Pyrolysis product (fragmentation process Scheme 2 and Scheme 3) | 17 | 338 |
Pyrolysis product (fragmentation process Scheme 3) | 20 | 370 |
Ph-Structures of Pyrolysis Products | Mass | Ret. Time (min) (Where Present) | Temp. (°C) | ||
---|---|---|---|---|---|
100:0 | 50:50 | 0:100 | |||
SO2 | 64 | 400 | |||
1.62 | 3.12 | 1.72 | 500 | ||
1.53 | 600 | ||||
Toluene | 92 | 2.47 | 2.47 | 400 | |
500 | |||||
2.98 | 2.91 | 600 | |||
Phenol | 94 | 4.44 | 4.99 | 400 | |
4.48 | 4.98 | 4.42 | 500 | ||
4.48 | 600 | ||||
166 | 400 | ||||
500 | |||||
16.30 | 16.08 | 600 | |||
Dibenzofuran | 168 | 400 | |||
15.46 | 500 | ||||
15.13 | 15.39 | 15.77 | 600 | ||
Ph–O–Ph | 170 | 400 | |||
12.85 | 13.64 | 12.91 | 500 | ||
13.01 | 13.53 | 600 | |||
184 | 400 | ||||
14.99 | 14.69 | 500 | |||
18.92 | 18.56 | 600 | |||
9H, Fluorene, 9-phenyl | 242 | 400 | |||
500 | |||||
22.20 | 22.22 | 600 | |||
Ph–Ph–O–Ph | 246 | 400 | |||
22.34 | 20.9 | 22.67 | 500 | ||
600 | |||||
Ph–CH2–Ph–O–Ph | 260 | 400 | |||
23.99 | 23.75 | 22.96 | 500 | ||
600 | |||||
HO–Ph–SO2–Ph–CH2–CH3 | 262 | 400 | |||
22.62 | 26.03 | 500 | |||
600 | |||||
288 | 400 | ||||
26.76 | 24.33 | 500 | |||
600 | |||||
Ph–SO2–Ph–O–Ph | 310 | 28.93 | 27.44 | 400 | |
27.42 | 27.46 | 500 | |||
600 | |||||
CH3–Ph–O–Ph–SO2–Ph | 324 | 28.38 | 400 | ||
28.35 | 500 | ||||
600 | |||||
Ph–SO2–Ph–O–Ph–CH2–CH3 | 338 | 400 | |||
27.58 | 27.59 | 29.22 | 500 | ||
600 | |||||
Cl–Ph–SO2–Ph–O–Ph | 344 | 28.56 | 28.56 | 400 | |
28.63 | 500 | ||||
600 | |||||
355 | 400 | ||||
27.42 | 500 | ||||
600 | |||||
370 | 400 | ||||
31.81 | 31.77 | 500 | |||
600 | |||||
HO–Ph–Ph–O–Ph–SO2–Ph | 402 | 400 | |||
20.58 | 500 | ||||
21.14 | 20.31 | 600 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dattilo, S.; Puglisi, C.; Mirabella, E.F.; Spina, A.; Scamporrino, A.A.; Zampino, D.C.; Blanco, I.; Cicala, G.; Ognibene, G.; Di Mauro, C.; et al. Thermal Degradation Processes of Aromatic Poly(Ether Sulfone) Random Copolymers Bearing Pendant Carboxyl Groups. Polymers 2020, 12, 1810. https://doi.org/10.3390/polym12081810
Dattilo S, Puglisi C, Mirabella EF, Spina A, Scamporrino AA, Zampino DC, Blanco I, Cicala G, Ognibene G, Di Mauro C, et al. Thermal Degradation Processes of Aromatic Poly(Ether Sulfone) Random Copolymers Bearing Pendant Carboxyl Groups. Polymers. 2020; 12(8):1810. https://doi.org/10.3390/polym12081810
Chicago/Turabian StyleDattilo, Sandro, Concetto Puglisi, Emanuele Francesco Mirabella, Angela Spina, Andrea Antonino Scamporrino, Daniela Clotilde Zampino, Ignazio Blanco, Gianluca Cicala, Giulia Ognibene, Chiara Di Mauro, and et al. 2020. "Thermal Degradation Processes of Aromatic Poly(Ether Sulfone) Random Copolymers Bearing Pendant Carboxyl Groups" Polymers 12, no. 8: 1810. https://doi.org/10.3390/polym12081810
APA StyleDattilo, S., Puglisi, C., Mirabella, E. F., Spina, A., Scamporrino, A. A., Zampino, D. C., Blanco, I., Cicala, G., Ognibene, G., Di Mauro, C., & Samperi, F. (2020). Thermal Degradation Processes of Aromatic Poly(Ether Sulfone) Random Copolymers Bearing Pendant Carboxyl Groups. Polymers, 12(8), 1810. https://doi.org/10.3390/polym12081810