Covalent Adaptable Network and Self-Healing Materials: Current Trends and Future Prospects in Sustainability
Abstract
:1. Introduction
2. Future Outlook and Conclusions
Funding
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Global Plastics Industry Growing 4–5 Percent Annually. Available online: https://www.plasticsnews.com/article/20190501/NEWS/190509992/global-plastics-industry-growing-4-5-percent-annually#:~:text=Theglobalplasticsandrubber,withtheAsia-Pacificregion (accessed on 29 August 2020).
- Global Plastics, Rubber Industry to Grow 4pc Annually. Trade Arab 2019. Available online: http://www.tradearabia.com/news/IND_353631.html (accessed on 29 August 2020).
- Global Plastics, Rubber Industry to Achieve 4–5% Annual Growth. Gulf Today 2019. Available online: https://www.gulftoday.ae/en/business/2019/04/17/global-plastics-rubber-industry-to-achieve-4-5-annual-growth (accessed on 29 August 2020).
- Zhang, B.; Digby, Z.A.; Flum, J.A.; Foster, E.M.; Sparks, J.L.; Konkolewicz, D. Self-Healing, malleable and creep limiting materials using both supramolecular and reversible covalent linkages. Polym. Chem. 2015, 6, 7368–7372. [Google Scholar] [CrossRef]
- Chakma, P.; Konkolewicz, D. Dynamic covalent bonds in polymeric materials. Angew. Chem. Int. Ed. 2019, 58, 9682–9695. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Kausar, A.; Muhammad, B. Advances in shape memory polyurethanes and composites: A review. Polym. Plast. Technol. Eng. 2015, 54, 1410–1423. [Google Scholar] [CrossRef]
- Ahmed, N.; Kausar, A.; Muhammad, B. Shape memory properties of electrically conductive multi-walled carbon nanotube-filled polyurethane/modified polystyrene blends. J. Plast. Film Sheeting 2016, 32, 272–292. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, B.; Zhang, W.; Yuan, C.; Dunn, M.; Ge, Q.; Yu, K. Chemomechanics of dual-stage reprocessable thermosets. J. Mech. Phys. Solids 2019, 126, 168–186. [Google Scholar] [CrossRef]
- Zhou, D.; Huang, H.; Wang, Y.; Yu, J.; Hu, Z. Design and synthesis of an amide-containing crosslinked network based on Diels-Alder chemistry for fully recyclable aramid fabric reinforced composites. Compos. Sci. Technol. 2020, 197, 108280. [Google Scholar] [CrossRef]
- Hayashi, M. Implantation of recyclability and healability into cross-linked commercial polymers by applying the vitrimer concept. Polymers 2020, 12, 1322. [Google Scholar] [CrossRef]
- Memon, H.; Liu, H.; Rashid, M.A.; Chen, L.; Jiang, Q.; Zhang, L.; Wei, Y.; Liu, W.; Qiu, Y. Vanillin-Based epoxy vitrimer with high performance and closed-loop recyclability. Macromolecules 2020, 53, 621–630. [Google Scholar] [CrossRef]
- Altuna, F.I.; Hoppe, C.E.; Williams, R.J.J. Epoxy vitrimers: The effect of transesterification reactions on the network structure. Polymers 2018, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Alabiso, W.; Schlögl, S. The impact of vitrimers on the industry of the future: Chemistry, properties and sustainable forward-looking applications. Polymers 2020, 12, 1660. [Google Scholar] [CrossRef] [PubMed]
- Pratama, P.A.; Sharifi, M.; Peterson, A.M.; Palmese, G.R. Room temperature self-healing thermoset based on the Diels–Alder reaction. ACS Appl. Mater. Interfaces 2013, 5, 12425–12431. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Dam, M.A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S.R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295, 1698–1702. [Google Scholar] [CrossRef] [PubMed]
- Schulte, B.; Tsotsalas, M.; Becker, M.; Studer, A.; De Cola, L. Dynamic microcrystal assembly by nitroxide exchange reactions. Angew. Chem. Int. Ed. 2010, 49, 6881–6884. [Google Scholar] [CrossRef]
- Yu, F.; Cao, X.; Du, J.; Wang, G.; Chen, X. Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels–Alder click reaction and acylhydrazone bond. ACS Appl. Mater. Interfaces 2015, 7, 24023–24031. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chen, D. A novel self-healing polyurethane based on disulfide bonds. Macromol. Chem. Phys. 2016, 217, 1191–1196. [Google Scholar] [CrossRef]
- Memon, H.; Wei, Y. Welding and reprocessing of disulfide-containing thermoset epoxy resin exhibiting behavior reminiscent of a thermoplastic. J. Appl. Polym. Sci. 2020, 49541. [Google Scholar] [CrossRef]
- García, J.M.; Jones, G.O.; Virwani, K.; McCloskey, B.D.; Boday, D.J.; ter Huurne, G.M.; Horn, H.W.; Coady, D.J.; Bintaleb, A.M.; Alabdulrahman, A.M.S. Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science 2014, 344, 732–735. [Google Scholar] [CrossRef]
- Lee, J.K.; Liu, X.; Yoon, S.H.; Kessler, M.R. Thermal analysis of ring-opening metathesis polymerized healing agents. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 1771–1780. [Google Scholar] [CrossRef]
- Craun, G.P.; Kuo, C.-Y.; Neag, C.M. Transesterification cure for coatings: Catalysis by epoxy and nucleophiles. Prog. Org. Coat. 1996, 29, 55–60. [Google Scholar] [CrossRef]
- Urban, M.W.; Davydovich, D.; Yang, Y.; Demir, T.; Zhang, Y.; Casabianca, L. Key-and-Lock commodity self-healing copolymers. Science 2018, 362, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Burnworth, M.; Tang, L.; Kumpfer, J.R.; Duncan, A.J.; Beyer, F.L.; Fiore, G.L.; Rowan, S.J.; Weder, C. Optically healable supramolecular polymers. Nature 2011, 472, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burattini, S.; Colquhoun, H.M.; Fox, J.D.; Friedmann, D.; Greenland, B.W.; Harris, P.J.F.; Hayes, W.; Mackay, M.E.; Rowan, S.J. A self-repairing, supramolecular polymer system: Healability as a consequence of donor–acceptor π–π stacking interactions. Chem. Commun. 2009, 6717–6719. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Wang, C.; Chen, S. Robust self-healing host–guest gels from magnetocaloric radical polymerization. Adv. Funct. Mater. 2014, 24, 1235–1242. [Google Scholar] [CrossRef]
- Faghihnejad, A.; Feldman, K.E.; Yu, J.; Tirrell, M.V.; Israelachvili, J.N.; Hawker, C.J.; Kramer, E.J.; Zeng, H. Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv. Funct. Mater. 2014, 24, 2322–2333. [Google Scholar] [CrossRef]
- Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Self-Healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977–980. [Google Scholar] [CrossRef]
- Bendler, J.T. Handbook of Polycarbonate Science and Technology; CRC Press: Boca Raton, FL, USA, 1999; ISBN 1482273691. [Google Scholar]
- Johnson, J.A.; Ablin, D.W.; Ernst, G.A. Efficient Petrochemical Processes: Technology, Design and Operation; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Polycarbonate Market Size To Reach $25.37 Billion By 2024. Available online: https://www.grandviewresearch.com/press-release/global-polycarbonate-market (accessed on 29 August 2020).
- Polycarbonate Market. Analysis By Application (Transportation, Electrical & Electronics, Construction, Packaging, Consumer Goods, Optical Media, Medical Devices) And Segment Forecasts To 2024. 2016. Available online: https://www.researchandmarkets.com/reports/3972847/polycarbonate-market-analysis-by-application (accessed on 29 August 2020).
- Kim, W.B.; Joshi, U.A.; Lee, J.S. Making polycarbonates without employing phosgene: An overview on catalytic chemistry of intermediate and precursor syntheses for polycarbonate. Ind. Eng. Chem. Res. 2004, 43, 1897–1914. [Google Scholar] [CrossRef]
- Rabnawaz, M. Rubbery Unsaturated Polycarbonates. U.S. Patent 2018/0334522A1, 22 November 2018. [Google Scholar]
- Harmon, J.P.; Bass, R. Self-Healing Polycarbonate Containing Polyurethane Nanotube Composite. U.S. Patent 8,846,801 B1, 3 September 2014. [Google Scholar]
- Yang, G.-W.; Zhang, Y.-Y.; Wang, Y.; Wu, G.-P.; Xu, Z.-K.; Darensbourg, D.J. Construction of autonomic self-healing CO2-based polycarbonates via one-pot tandem synthetic strategy. Macromolecules 2018, 51, 1308–1313. [Google Scholar] [CrossRef]
- Oshimura, M.; Hirata, T.; Hirano, T.; Ute, K. Synthesis of aliphatic polycarbonates by irreversible polycondensation catalyzed by dilithium tetra-tert-butylzincate. Polymer 2017, 131, 50–55. [Google Scholar] [CrossRef]
- Wu, G.-P.; Darensbourg, D.J.; Lu, X.-B. Tandem metal-coordination copolymerization and organocatalytic ring-opening polymerization via water to synthesize diblock copolymers of styrene oxide/CO2 and lactide. J. Am. Chem. Soc. 2012, 134, 17739–17745. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Wu, G. A One-Pot synthesis of a triblock copolymer from propylene oxide/carbon dioxide and lactide: Intermediacy of polyol initiators. Angew. Chem. Int. Ed. 2013, 52, 10602–10606. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fan, J.; Darensbourg, D.J. Construction of versatile and functional nanostructures derived from CO2-based polycarbonates. Angew. Chem. Int. Ed. 2015, 54, 10206–10210. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Mediratta, G.; Vengu, G.P.; Sikder, A. Inherently Healing Polycarbonate Resins. U.S. Patent 16,074,855, 7 February 2019. [Google Scholar]
- Thongsomboon, W.; Sherwood, M.; Arellano, N.; Nelson, A. Thermally induced nanoimprinting of biodegradable polycarbonates using dynamic covalent cross-links. ACS Macro Lett. 2013, 2, 19–22. [Google Scholar] [CrossRef]
- Kiesewetter, M.K.; Shin, E.J.; Hedrick, J.L.; Waymouth, R.M. Organocatalysis: Opportunities and challenges for polymer synthesis. Macromolecules 2010, 43, 2093–2107. [Google Scholar] [CrossRef]
- Schenzel, A.M.; Moszner, N.; Barner-Kowollik, C. Self-Reporting dynamic covalent polycarbonate networks. Polym. Chem. 2017, 8, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Jang, B.N.; Wilkie, C.A. The thermal degradation of bisphenol A polycarbonate in air. Thermochim. Acta 2005, 426, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Snyder, R.L.; Fortman, D.J.; De Hoe, G.X.; Hillmyer, M.A.; Dichtel, W.R. Reprocessable acid-degradable polycarbonate vitrimers. Macromolecules 2018, 51, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Rabnawaz, M.; Wyman, I.; Auras, R.; Cheng, S. A roadmap towards green packaging: The current status and future outlook for polyesters in the packaging industry. Green Chem. 2017, 19, 4737–4753. [Google Scholar] [CrossRef]
- Karger-Kocsis, J. Polypropylene: An AZ Reference; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 2, ISBN 9401144214. [Google Scholar]
- Exchange, T. Preferred Fiber and Materials Market Report 2017. Text. Exch. 2019. Available online: https://textileexchange.org/wp-content/uploads/2019/11/Textile-Exchange_Preferred-Fiber-Material-Market-Report_2019.pdf. (accessed on 29 August 2020).
- Zhang, H.; Majumdar, S.; van Benthem, R.A.T.M.; Sijbesma, R.P.; Heuts, J.P.A. Intramolecularly catalyzed dynamic polyester networks using neighboring carboxylic and sulfonic acid groups. ACS Macro Lett. 2020, 9, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Self, J.L.; Dolinski, N.D.; Zayas, M.S.; Read de Alaniz, J.; Bates, C.M. Brønsted-Acid-Catalyzed exchange in polyester dynamic covalent networks. ACS Macro Lett. 2018, 7, 817–821. [Google Scholar] [CrossRef] [Green Version]
- Zeimaran, E.; Pourshahrestani, S.; Kadri, N.A.; Kong, D.; Shirazi, S.F.S.; Naveen, S.V.; Murugan, S.S.; Kumaravel, T.S.; Salamatinia, B. Self-Healing polyester urethane supramolecular elastomers reinforced with cellulose nanocrystals for biomedical applications. Macromol. Biosci. 2019, 19, 1900176. [Google Scholar] [CrossRef] [PubMed]
- Kuang, X.; Liu, G.; Zheng, L.; Li, C.; Wang, D. Functional polyester with widely tunable mechanical properties: The role of reversible cross-linking and crystallization. Polymer 2015, 65, 202–209. [Google Scholar] [CrossRef]
- Fukuda, K.; Shimoda, M.; Sukegawa, M.; Nobori, T.; Lehn, J.-M. Doubly degradable dynamers: Dynamic covalent polymers based on reversible imine connections and biodegradable polyester units. Green Chem. 2012, 14, 2907–2911. [Google Scholar] [CrossRef]
- Chen, Y.; Kushner, A.M.; Williams, G.A.; Guan, Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 2012, 4, 467. [Google Scholar] [CrossRef]
- Maeda, T.; Otsuka, H.; Takahara, A. Dynamic covalent polymers: Reorganizable polymers with dynamic covalent bonds. Prog. Polym. Sci. 2009, 34, 581–604. [Google Scholar] [CrossRef]
- Kotliar, A.M. Interchange reactions involving condensation polymers. J. Polym. Sci. Macromol. Rev. 1981, 16, 367–395. [Google Scholar] [CrossRef]
- Porter, R.S.; Wang, L.-H. Compatibility and transesterification in binary polymer blends. Polymer 1992, 33, 2019–2030. [Google Scholar] [CrossRef]
- Korshak, V.; Frunze, T. Synthetic Hetero-Chain Polyamides; IPST: Jerusalem, Israel, 1964; p. 87442. [Google Scholar]
- MENAFN-MarketersMEDIA. Available online: https://menafn.com/1100196306/Polyamide-Market-Size-Share-Growth-Analysis-and-Industrial-Forecast-2020-2026 (accessed on 29 August 2020).
- Growing Demand for Polyamides from the Automotive Industry Is the Most Significant Factor Estimated to Stimulate Market Demand. Globe Newswire 2019. Available online: https://www.globenewswire.com/news-release/2019/07/15/1882593/0/en/Polyamide-Market-To-Reach-USD-38-30-Billion-By-2026-Reports-And-Data.html (accessed on 29 August 2020).
- Schaub, T. Producing adipic acid without the nitrous oxide. Science 2019, 366, 1447. [Google Scholar] [CrossRef]
- Khan, A.; Huang, K.; Sarwar, M.G.; Rabnawaz, M. High modulus, fluorine-free self-healing anti-smudge coatings. Prog. Org. Coat. 2020, 145, 105703. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Bai, J.; Li, Z.; Hu, G. A robust and high self-healing efficiency poly (Urea-Urethane) Based on disulfide bonds with cost-effective strategy. Macromol. Chem. Phys. 2019, 220, 1900340. [Google Scholar] [CrossRef]
- Ying, H.; Zhang, Y.; Cheng, J. Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 2014, 5, 3218. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lu, X.; Sun, S.; Yu, C.; Xia, H. Preparation, characterization and properties of intrinsic self-healing elastomers. J. Mater. Chem. B 2019, 7, 4876–4926. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Huang, K.; Sarwar, M.G.; Cheng, K.; Li, Z.; Tuhin, M.O.; Rabnawaz, M. Self-Healing and self-cleaning clear coating. J. Colloid Interface Sci. 2020, 577, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Khan, A.; Tuhin, M.O.; Rabnawaz, M.; Li, Z.; Naveed, M. A novel dual-layer approach towards omniphobic polyurethane coatings. RSC Adv. 2019, 9, 26703–26711. [Google Scholar] [CrossRef] [Green Version]
- Naveed, M.; Rabnawaz, M.; Khan, A.; Tuhin, M.O. Dual-Layer approach toward self-healing and self-cleaning polyurethane thermosets. Polymers 2019, 11, 1849. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Rabnawaz, M.; Li, Z.; Khan, A.; Naveed, M.; Tuhin, M.O.; Rahimb, F. Simple design for durable and clear self-cleaning coatings. ACS Appl. Polym. Mater. 2019, 1, 2659–2667. [Google Scholar] [CrossRef]
- Wang, Z.; Gangarapu, S.; Escorihuela, J.; Fei, G.; Zuilhof, H.; Xia, H. Dynamic covalent urea bonds and their potential for development of self-healing polymer materials. J. Mater. Chem. A 2019, 7, 15933–15943. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Guo, W.; Li, W.; Liu, X.; Zhu, H.; Zhang, J.; Liu, X.; Wei, L.; Sun, A. Tuning hard phase towards synergistic improvement of toughness and self-healing ability of poly (urethane urea) by dual chain extenders and coordinative bonds. Chem. Eng. J. 2020, 393, 124583. [Google Scholar] [CrossRef]
- Röttger, M.; Domenech, T.; van der Weegen, R.; Breuillac, A.; Nicolaÿ, R.; Leibler, L. High-Performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 2017, 356, 62–65. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Ahmed, N.; Rabnawaz, M. Covalent Adaptable Network and Self-Healing Materials: Current Trends and Future Prospects in Sustainability. Polymers 2020, 12, 2027. https://doi.org/10.3390/polym12092027
Khan A, Ahmed N, Rabnawaz M. Covalent Adaptable Network and Self-Healing Materials: Current Trends and Future Prospects in Sustainability. Polymers. 2020; 12(9):2027. https://doi.org/10.3390/polym12092027
Chicago/Turabian StyleKhan, Ajmir, Naveed Ahmed, and Muhammad Rabnawaz. 2020. "Covalent Adaptable Network and Self-Healing Materials: Current Trends and Future Prospects in Sustainability" Polymers 12, no. 9: 2027. https://doi.org/10.3390/polym12092027
APA StyleKhan, A., Ahmed, N., & Rabnawaz, M. (2020). Covalent Adaptable Network and Self-Healing Materials: Current Trends and Future Prospects in Sustainability. Polymers, 12(9), 2027. https://doi.org/10.3390/polym12092027