Construction and Transition Metal Oxide Loading of Hierarchically Porous Carbon Aerogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Controllable Preparation of Carbon Aerogels
2.2. Construction of Hierarchically Porous Carbon Aerogels
2.3. Transition Metal Oxides Loading of Hierarchically Porous Carbon Aerogels
2.3.1. Nano Manganese Oxide Loading of Carbon Aerogels
2.3.2. Nano Nickel Oxide Loading of Carbon Aerogels
3. Experimental Section
3.1. Materials
3.2. Preparation and Loading of Hierarchically Porous Carbon Aerogels
3.2.1. Preparation of Hierarchically Porous Carbon Aerogels
3.2.2. Loading of Hierarchically Porous Carbon Aerogels
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siyasukh, A.; Maneeprom, P.; Larpkiattaworn, S.; Tonanon, N.; Tanthapanichakoon, W.; Tamon, H.; Charinpanitkul, T. Preparation of a carbon monolith with hierarchical porous structure by ultrasonic irradiation followed by carbonization, physical and chemical activation. Carbon 2008, 46, 1309–1315. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, Z.; Wang, X.; Dai, Y.; Cao, X.; Wang, Y.; Hua, R.; Feng, H.; Chen, J.; Liu, Y.; et al. Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): Batch and fixed-bed column studies. Chem. Eng. J. 2019, 370, 1376–1387. [Google Scholar] [CrossRef]
- Yang, Z.; Qiao, W.-M.; Liang, X.-Y. Modelling and optimization of the pore structure of carbon aerogels using an artificial neural network. New Carbon Mater. 2017, 32, 77–85. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jung, J.C.; Park, S.; Seo, J.G.; Baeck, S.-H.; Yoon, J.R.; Yi, J.; Song, I.K. Effect of preparation method on electrochemical property of Mn-doped carbon aerogel for supercapacitor. Curr. Appl. Phys. 2011, 11, 1–5. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Wang, H.; Wu, X.; Shen, J. A positive-negative alternate adsorption effect for capacitive deionization in nano-porous carbon aerogel electrodes to enhance desalination capacity. Desalination 2019, 458, 45–53. [Google Scholar] [CrossRef]
- Ahamad, T.; Naushad, M.; Ruksana; Alhabarah, A.N.; Alshehri, S.M. N/S doped highly porous magnetic carbon aerogel derived from sugarcane bagasse cellulose for the removal of bisphenol A. Int. J. Biol. Macromol. 2019, 132, 1031–1038. [Google Scholar] [CrossRef]
- Abolhasani, S.; Ahmadpour, A.; Rohani Bastami, T.; Yaqubzadeh, A. Facile synthesis of mesoporous carbon aerogel for the removal of ibuprofen from aqueous solution by central composite experimental design (CCD). J. Mol. Liq. 2019, 281, 261–268. [Google Scholar] [CrossRef]
- Feng, J.; Feng, J.; Zhang, C. Thermal conductivity of low density carbon aerogels. J. Porous Mater. 2011, 19, 551–556. [Google Scholar] [CrossRef]
- Kim, S.J.; Hwang, S.W.; Hyun, S.H. Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci. 2005, 40, 725–731. [Google Scholar] [CrossRef]
- Fang, B.; Wei, Y.Z.; Maruyama, K.; Kumagai, M. High capacity supercapacitors based on modified activated carbon aerogel. J. Appl. Electrochem. 2005, 35, 229–233. [Google Scholar] [CrossRef]
- Schmitt, C.; Pröbstle, H.; Fricke, J. Carbon cloth-reinforced and activated aerogel films for supercapacitors. J. Non-Cryst. Solids 2001, 285, 277–282. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X.; Shen, P. Macroporous conducting matrix: Fabrication and application as electrocatalyst support. Electrochem. Commun. 2006, 8, 713–719. [Google Scholar] [CrossRef]
- Zhao, H.; Shen, X.; Chen, Y.; Zhang, S.N.; Gao, P.; Zhen, X.; Li, X.H.; Zhao, G. A COOH-terminated nitrogen-doped carbon aerogel as a bulk electrode for completely selective two-electron oxygen reduction to H2O2. Chem. Commun. 2019, 55, 6173–6176. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Shi, M.; Zou, Y.; Wei, Y.; Chen, L.; Fan, C.; Yang, R.; Xu, Y. Tunable hierarchical porous carbon aerogel/graphene composites cathode matrix for Li-S batteries. J. Alloy. Compd. 2019, 791, 952–961. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, S.; Yan, M.; Zhang, L.; Liu, Z. Synthesis, characterization and electrochemical properties of S-doped carbon aerogels. Solid State Ion. 2018, 321, 91–97. [Google Scholar] [CrossRef]
- Wang, W.-K.; Tang, B.; Liu, J.; Shi, H.; Xu, Q.; Zhao, G. Self-supported microbial carbon aerogel bioelectrocatalytic anode promoting extracellular electron transfer for efficient hydrogen evolution. Electrochim. Acta 2019, 303, 268–274. [Google Scholar] [CrossRef]
- Li, X.; Feng, J.; Jiang, Y.; Li, L.; Feng, J. Anti-oxidation performance of carbon aerogel composites with SiCO ceramic inner coating. Ceram. Int. 2019, 45, 9704–9711. [Google Scholar] [CrossRef]
- Linneen, N.; Delnick, F.; Islam, S.Z.; Deshmane, V.G.; Bhave, R. Application of the macrohomogeneous line model for the characterization of carbon aerogel electrodes in capacitive deionization. Electrochim. Acta 2019, 301, 1–7. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Mi, M.; Kong, W.; Ge, Y.; Hu, J. Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization. Sep. Purif. Technol. 2019, 224, 44–50. [Google Scholar] [CrossRef]
- Li, F.; Xie, L.; Sun, G.; Kong, Q.; Su, F.; Cao, Y.; Wei, J.; Ahmad, A.; Guo, X.; Chen, C.-M. Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices. Microporous Mesoporous Mater. 2019, 279, 293–315. [Google Scholar] [CrossRef]
- Raj kumar, T.; Gnana kumar, G.; Manthiram, A. Biomass—Derived 3D Carbon Aerogel with Carbon Shell—Confined Binary Metallic Nanoparticles in CNTs as an Efficient Electrocatalyst for Microfluidic Direct Ethylene Glycol Fuel Cells. Adv. Energy Mater. 2019, 9. [Google Scholar] [CrossRef]
- Tanaka, N.; Kobayashi, H.; Nakanishi, K.; Minakuchi, H.; Ishizuka, N. Monolithic LC columns. Anal. Chem. 2001, 73, 420A–429A. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, C.; Dai, S.; Guiochon, G. A graphitized-carbon monolithic column. Anal. Chem. 2003, 75, 4904–4912. [Google Scholar] [CrossRef]
- Al-Muhtaseb, S.A.; Ritter, J.A. Preparation and Properties of Resorcinol-Formaldehyde Organic and Carbon Gels. Adv. Mater. 2003, 15, 101–114. [Google Scholar] [CrossRef]
- Antoniou, E.; Alexandridis, P. Polymer conformation in mixed aqueous-polar organic solvents. Eur. Polym. J. 2010, 46, 324–335. [Google Scholar] [CrossRef]
- Holmqvist, P.; Alexandridis, P.; Lindman, B. Phase Behavior and Structure of Ternary Amphiphilic Block Copolymer—Alkanol—Water Systems: Comparison of Poly(ethylene oxide)/Poly(propylene oxide) to Poly(ethylene oxide)/Poly(tetrahydrofuran) Copolymers. Langmuir 1997, 13, 2471–2479. [Google Scholar] [CrossRef]
- Thubsuang, U.; Ishida, H.; Wongkasemjit, S.; Chaisuwan, T. Self-formation of 3D interconnected macroporous carbon xerogels derived from polybenzoxazine by selective solvent during the sol—Gel process. J. Mater. Sci. 2014, 49, 4946–4961. [Google Scholar] [CrossRef]
- Qin, G.; Guo, S. Preparation of RF organic aerogels and carbon aerogels by alcoholic sol—Gel process. Carbon 2001, 39, 1935–1937. [Google Scholar] [CrossRef]
- Palapati, N.K.R.; Demir, M.; Harris, C.T.; Subramanian, A.; Gupta, R.B. Enhancing the electronic conductivity of Lignin-sourced, sub-micron carbon particles. In Proceedings of the 2015 IEEE Nanotechnology Materials and Devices Conference (NMDC), Anchorage, AK, USA, 13–16 September 2015; pp. 1–2. [Google Scholar] [CrossRef]
- Ashourirad, B.; Demir, M.; Smith, R.A.; Gupta, R.B.; El-Kaderi, H.M. Rapid transformation of heterocyclic building blocks into nanoporous carbons for high-performance supercapacitors. RSC Adv. 2018, 8, 12300–12309. [Google Scholar] [CrossRef] [Green Version]
- Altinci, O.C.; Demir, M. Beyond Conventional Activating Methods, a Green Approach for the Synthesis of Biocarbon and Its Supercapacitor Electrode Performance. Energy Fuels 2020, 34, 7658–7665. [Google Scholar] [CrossRef]
- Liu, H.; Cao, K.; Li, W.; Han, Q.; Zheng, R.; Shu, J.; Zhang, Z.; Huang, K.; Jing, Q.; Jiao, L. Constructing hierarchical MnO2/Co3O4 heterostructure hollow spheres for high-performance Li-Ion batteries. J. Power Sources 2019, 437. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, L.; Huang, Q.; Zou, Z.; Yang, H. 3D carbon aerogel-supported PtNi intermetallic nanoparticles with high metal loading as a durable oxygen reduction electrocatalyst. Int. J. Hydrog. Energy 2017, 42, 26695–26703. [Google Scholar] [CrossRef]
- Oh, J.H.; Su Jo, M.; Jeong, S.M.; Cho, C.; Kang, Y.C.; Cho, J.S. New synthesis strategy for hollow NiO nanofibers with interstitial nanovoids prepared via electrospinning using camphene for anodes of lithium-ion batteries. J. Ind. Eng. Chem. 2019, 77, 76–82. [Google Scholar] [CrossRef]
PEG2000/g | 0 | 0.2 | 0.4 | 0.6 | 0.8 |
---|---|---|---|---|---|
BET-specific surface area/m2·g−1 | 665.1 | 568.8 | 482.9 | 455.1 | 419.2 |
Pore volume/cm3·g−1 | 0.343 | 0.297 | 0.252 | 0.235 | 0.217 |
Micropore surface area/m2·g−1 | 605.1 | 509.2 | 434.8 | 410.1 | 372.6 |
Micropore volume/cm3·g−1 | 0.318 | 0.267 | 0.228 | 0.215 | 0.196 |
Sample | HCl/mL | PEG/g | Water/mL | R/g | F/mL |
---|---|---|---|---|---|
CA-1 | 0 | 0 | 7.45 | 2.75 | 3.61 |
CA-2 | 0.1 | 0 | 7.45 | 2.75 | 3.61 |
CA-3 | 0.2 | 0 | 7.35 | 2.75 | 3.61 |
CA-4 | 0.3 | 0 | 7.25 | 2.75 | 3.61 |
CA-5 | 0.4 | 0 | 7.15 | 2.75 | 3.61 |
CA-6 | 0.5 | 0 | 7.05 | 2.75 | 3.61 |
CA-7 | 0.6 | 0 | 6.95 | 2.75 | 3.61 |
CA-8 | 0.7 | 0 | 6.85 | 2.75 | 3.61 |
CA-9 | 0.8 | 0 | 6.75 | 2.75 | 3.61 |
CA-10 | 0.9 | 0 | 6.65 | 2.75 | 3.61 |
CA-11 | 1.0 | 0 | 6.55 | 2.75 | 3.61 |
CA-12 | 0.5 | 0.2 | 7.55 | 2.75 | 3.61 |
CA-13 | 0.5 | 0.4 | 7.55 | 2.75 | 3.61 |
CA-14 | 0.5 | 0.6 | 7.55 | 2.75 | 3.61 |
CA-15 | 0.5 | 0.8 | 7.55 | 2.75 | 3.61 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Ruan, X.; Qiu, J.; Liang, H.; Guo, X.; Yang, H. Construction and Transition Metal Oxide Loading of Hierarchically Porous Carbon Aerogels. Polymers 2020, 12, 2066. https://doi.org/10.3390/polym12092066
Wang J, Ruan X, Qiu J, Liang H, Guo X, Yang H. Construction and Transition Metal Oxide Loading of Hierarchically Porous Carbon Aerogels. Polymers. 2020; 12(9):2066. https://doi.org/10.3390/polym12092066
Chicago/Turabian StyleWang, Jintian, Xinyang Ruan, Jiahao Qiu, Hao Liang, Xingzhong Guo, and Hui Yang. 2020. "Construction and Transition Metal Oxide Loading of Hierarchically Porous Carbon Aerogels" Polymers 12, no. 9: 2066. https://doi.org/10.3390/polym12092066
APA StyleWang, J., Ruan, X., Qiu, J., Liang, H., Guo, X., & Yang, H. (2020). Construction and Transition Metal Oxide Loading of Hierarchically Porous Carbon Aerogels. Polymers, 12(9), 2066. https://doi.org/10.3390/polym12092066