Starch-Capped Silver Nanoparticles Impregnated into Propylamine-Substituted PVA Films with Improved Antibacterial and Mechanical Properties for Wound-Bandage Applications
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Materials
2.2. Synthesis of Silver Nanoparticles
2.2.1. Synthesis of Silver Nanoparticles via Chemical Reduction Method
2.2.2. Synthesis of Starch-Capped Silver Nanoparticles via Green Method
2.3. Synthesis of Silver Nanoparticles Encapsulated PVA Films
2.4. Synthesis of Propyl Amine-Substituted Poly Vinyl Alcohol Films
2.5. Synthesis of Silver Nanoparticles Encapsulated Propyl Amine-Substituted PVA Films
2.6. Instrumentations and Methods
2.7. Antibacterial Activity
3. Results and Discussion
3.1. FTIR Results
3.2. NMR Analysis
3.3. XRD Analysis
3.4. UV-Vis Spectroscopy
3.5. SEM Results
3.6. Mechanical Testing
3.7. Antibacterial Assay
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shiu, H.T.; Leung, P.C.; Ko, C.H. The roles of cellular and molecular components of a hematoma at early stage of bone healing. J. Tissue Eng. Regen. Med. 2018, 12, e1911–e1925. [Google Scholar] [CrossRef]
- Jiang, X.; Clark, R.A.; Liu, L.; Wagers, A.J.; Fuhlbrigge, R.C.; Kupper, T.S. Skin infection generates non-migratory memory CD8+ T RM cells providing global skin immunity. Nature 2012, 483, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Turner, T. Hospital usage of absorbent dressings. Pharm. J. 1979, 222, 421–426. [Google Scholar]
- Bi, H.; Feng, T.; Li, B.; Han, Y. In Vitro and In Vivo Comparison Study of Electrospun PLA and PLA/PVA/SA Fiber Membranes for Wound Healing. Polymers 2020, 12, 839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alesa Gyles, D.; Pereira Júnior, A.D.; Diniz Castro, L.; Santa Brigida, A.; Nobre Lamarão, M.L.; Ramos Barbosa, W.L.; Carréra Silva Júnior, J.O.; Ribeiro-Costa, R.M. Polyacrylamide-Metilcellulose Hydrogels Containing Aloe barbadensis Extract as Dressing for Treatment of Chronic Cutaneous Skin Lesions. Polymers 2020, 12, 690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, N.; Tayyeb, D.; Ali, I.; K Alruwaili, N.; Ahmad, W.; Khan, A.H.; Iqbal, M.S. Development and Characterization of Hemicellulose-Based Films for Antibacterial Wound-Dressing Application. Polymers 2020, 12, 548. [Google Scholar] [CrossRef] [Green Version]
- Hodel, K.V.S.; Fonseca, L.M.d.S.; Santos, I.M.D.S.; Cerqueira, J.C.; Santos-Júnior, R.E.d.; Nunes, S.B.; Barbosa, J.D.V.; Machado, B.A.S. Evaluation of Different Methods for Cultivating Gluconacetobacter hansenii for Bacterial Cellulose and Montmorillonite Biocomposite Production: Wound-Dressing Applications. Polymers 2020, 12, 267. [Google Scholar] [CrossRef] [Green Version]
- Mogoşanu, G.D.; Grumezescu, A.M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 2014, 463, 127–136. [Google Scholar] [CrossRef]
- Kokabi, M.; Sirousazar, M.; Hassan, Z.M. PVA–clay nanocomposite hydrogels for wound dressing. Eur. Polym. J. 2007, 43, 773–781. [Google Scholar] [CrossRef]
- Kamoun, E.A.; Kenawy, E.-R.S.; Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 8, 217–233. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Kamoun, E.A.; Eldin, M.S.M.; El-Meligy, M.A. Physically crosslinked poly (vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications. Arab. J. Chem. 2014, 7, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Gohil, J.; Bhattacharya, A.; Ray, P. Studies on the crosslinking of poly (vinyl alcohol). J. Polym. Res. 2006, 13, 161–169. [Google Scholar] [CrossRef]
- Moulay, S. Poly (vinyl alcohol): What a material! What a chemistry. In Recent Research and Developments in Applied Polymer Science; Research Signpost: Kerala, India, 2009; Volume 4, pp. 391–496. [Google Scholar]
- Alves, M.; Young, C.; Bozzetto, K.; Poole-Warren, L.; Martens, P. Degradable, click poly (vinyl alcohol) hydrogels: Characterization of degradation and cellular compatibility. Biomed. Mater. 2012, 7, 024106. [Google Scholar] [CrossRef] [PubMed]
- Eastman, S.A.; Lesser, A.J.; McCarthy, T.J. Quantitative poly (vinyl alcohol) modification in ionic liquids: Esterification and urethanation with low surface tension producing reagents. Macromolecules 2010, 43, 4584–4588. [Google Scholar] [CrossRef]
- Salavagione, H.J.; Martínez, G.; Gómez, R.; Segura, J.L. Synthesis of water-soluble perylenediimide-functionalized polymer through esterification with poly (vinyl alcohol). J. Polym. Sci. Part A Polym. Chem. 2010, 48, 3613–3622. [Google Scholar] [CrossRef]
- Bader, R.A. Synthesis and viscoelastic characterization of novel hydrogels generated via photopolymerization of 1, 2-epoxy-5-hexene modified poly (vinyl alcohol) for use in tissue replacement. Acta Biomater. 2008, 4, 967–975. [Google Scholar] [CrossRef]
- Wang, C.-C.; Yang, F.-L.; Liu, L.-F.; Fu, Z.-M.; Xue, Y. Hydrophilic and antibacterial properties of polyvinyl alcohol/4-vinylpyridine graft polymer modified polypropylene non-woven fabric membranes. J. Membr. Sci. 2009, 345, 223–232. [Google Scholar] [CrossRef]
- Montalbetti, C.A.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron 2005, 61, 10827–10852. [Google Scholar] [CrossRef]
- Lim, K.S.; Alves, M.H.; Poole-Warren, L.A.; Martens, P.J. Covalent incorporation of non-chemically modified gelatin into degradable PVA-tyramine hydrogels. Biomaterials 2013, 34, 7097–7105. [Google Scholar] [CrossRef]
- Crispim, E.; Piai, J.; Fajardo, A.; Ramos, E.; Nakamura, T.; Nakamura, C.; Rubira, A.; Muniz, E. Hydrogels based on chemically modified poly (vinyl alcohol)(PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization. Express Polym. Lett. 2012, 6, 383–395. [Google Scholar] [CrossRef]
- Zhao, L.; Mitomo, H.; Zhai, M.; Yoshii, F.; Nagasawa, N.; Kume, T. Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydr. Polym. 2003, 53, 439–446. [Google Scholar] [CrossRef]
- Yu, H.; Xu, X.; Chen, X.; Lu, T.; Zhang, P.; Jing, X. Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. J. Appl. Polym. Sci. 2007, 103, 125–133. [Google Scholar] [CrossRef]
- Juby, K.; Dwivedi, C.; Kumar, M.; Kota, S.; Misra, H.; Bajaj, P. Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study. Carbohydr. Polym. 2012, 89, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, M.G.; Dille, J.; Godet, S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int. J. Chem. Biomol. Eng. 2009, 2, 104–111. [Google Scholar]
- Martínez-Castañon, G.-A.; Nino-Martinez, N.; Martinez-Gutierrez, F.; Martinez-Mendoza, J.; Ruiz, F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanoparticle Res. 2008, 10, 1343–1348. [Google Scholar] [CrossRef]
- Wei, D.; Sun, W.; Qian, W.; Ye, Y.; Ma, X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res. 2009, 344, 2375–2382. [Google Scholar] [CrossRef] [PubMed]
- Ramar, M.; Manikandan, B.; Marimuthu, P.N.; Raman, T.; Mahalingam, A.; Subramanian, P.; Karthick, S.; Munusamy, A. Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 140, 223–228. [Google Scholar] [CrossRef]
- Celebioglu, A.; Topuz, F.; Yildiz, Z.I.; Uyar, T. One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr. Polym. 2019, 207, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Marulasiddeshwara, M.; Dakshayani, S.; Kumar, M.S.; Chethana, R.; Kumar, P.R.; Devaraja, S. Facile-one pot-green synthesis, antibacterial, antifungal, antioxidant and antiplatelet activities of lignin capped silver nanoparticles: A promising therapeutic agent. Mater. Sci. Eng. C 2017, 81, 182–190. [Google Scholar] [CrossRef]
- Marambio-Jones, C.; Hoek, E.M. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Bharath, L. Mechanism of plant-mediated synthesis of silver nanoparticles–a review on biomolecules involved, characterisation and antibacterial activity. Chem. -Biol. Interact. 2017, 273, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, K.S.; Husen, A.; Rao, R.A. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 2018, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Koduru, J.R.; Kailasa, S.K.; Bhamore, J.R.; Kim, K.-H.; Dutta, T.; Vellingiri, K. Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: A review. Adv. Colloid Interface Sci. 2018, 256, 326–339. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Oluwafemi, O.S.; Songca, S.P.; Jayachandran, V.; Rouxel, D.; Joubert, O.; Kalarikkal, N.; Thomas, S. Synthesis, antibacterial, cytotoxicity and sensing properties of starch-capped silver nanoparticles. J. Mol. Liq. 2016, 213, 75–81. [Google Scholar] [CrossRef]
- Ortega-Arroyo, L.; Martin-Martinez, E.S.; Aguilar-Mendez, M.A.; Cruz-Orea, A.; Hernandez-Pérez, I.; Glorieux, C. Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface response. Starch-Stärke 2013, 65, 814–821. [Google Scholar] [CrossRef]
- Porel, S.; Singh, S.; Harsha, S.S.; Rao, D.N.; Radhakrishnan, T. Nanoparticle-embedded polymer: In situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting. Chem. Mater. 2005, 17, 9–12. [Google Scholar] [CrossRef]
- Khanna, P.; Singh, N.; Charan, S.; Subbarao, V.; Gokhale, R.; Mulik, U. Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Mater. Chem. Phys. 2005, 93, 117–121. [Google Scholar] [CrossRef]
- Nguyen, J.; Reul, R.; Roesler, S.; Dayyoub, E.; Schmehl, T.; Gessler, T.; Seeger, W.; Kissel, T.H. Amine-modified poly (vinyl alcohol) s as non-viral vectors for siRNA delivery: Effects of the degree of amine substitution on physicochemical properties and knockdown efficiency. Pharm. Res. 2010, 27, 2670–2682. [Google Scholar] [CrossRef]
- Awada, H.; Daneault, C. Chemical modification of poly (vinyl alcohol) in water. Appl. Sci. 2015, 5, 840–850. [Google Scholar] [CrossRef]
- Robeson, L.M.; Pickering, T.L. Amine functional poly (vinyl alcohol) for improving properties of recycled paper. US Patent 5,380,403, 10 January 1995. [Google Scholar]
- Sui, C.; Li, C.; Guo, X.; Cheng, T.; Gao, Y.; Zhou, G.; Gong, J.; Du, J. Facile synthesis of silver nanoparticles-modified PVA/H4SiW12O40 nanofibers-based electrospinning to enhance photocatalytic activity. Appl. Surf. Sci. 2012, 258, 7105–7111. [Google Scholar] [CrossRef]
- Dallas, P.; Sharma, V.K.; Zboril, R. Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Adv. Colloid Interface Sci. 2011, 166, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Quemener, D.; Upadhyaya, L.; Semsarilar, M.; Deratani, A. Nanocomposite membranes with magnesium, titanium, iron and silver nanoparticles-A review. J. Membr. Sci. Res. 2017, 3, 187–198. [Google Scholar]
- De Lima, M.R.F.; de Souza Luna, J.; Dos Santos, A.F.; De Andrade, M.C.C.; Sant’Ana, A.E.G.; Genet, J.-P.; Marquez, B.; Neuville, L.; Moreau, N. Anti-bacterial activity of some Brazilian medicinal plants. J. Ethnopharmacol. 2006, 105, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, B.; Garmaroudi, F.S.; Hashemi, M.; Nezhad, H.; Nasrollahi, A.; Ardalan, S.; Ardalan, S. Comparison of the anti-bacterial activity on the nanosilver shapes: Nanoparticles, nanorods and nanoplates. Adv. Powder Technol. 2012, 23, 22–26. [Google Scholar] [CrossRef]
- Amany, A.; El-Rab, S.F.G.; Gad, F. Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity. Der. Pharma Chem. 2012, 4, 53–65. [Google Scholar]
- da Silva, M.R.; Santos, C.P.; Monte, M.; Sousa, C. Thermochemical studies of phthalimide and two N-alkylsubstituted phthalimides (ALKYL= ETHYL AND n-PROPYL). J. Therm. Anal. Calorim. 2006, 83, 533–539. [Google Scholar] [CrossRef]
- Kast, J.; Meyer, N.; Misslitz, U.; Harreus, A.; Rang, H.; Gerber, M.; Walter, H.; Westphalen, K.-O. Phthalimides Useful as Intermediate Compounds. U.S. Patent No. 5,508,412, 16 April 1996. [Google Scholar]
- Restaino, A.J.; Phalangas, C.J.; Titus, G.R. Amine and Ammonium Nitrogen Containing Polyvinyl Alcohol Polymers Having Improved Lipophilic Properties for use in Skin Conditioning, Cosmetic and Pharmaceutical Formulations. U.S. Patent No. 4,689,217, 25 August 1987. [Google Scholar]
- Vig, R.; Gerger, S.; Selinfreund, R.; Miller, P.; Cunningham, M.; Philips, C.; Cook, E.; Saglimbeni, A. Bis-Propyl Amine Analog and Composition. U.S. Patent Application No. 10,715,244, 5 August 2004. [Google Scholar]
- Hebeish, A.; Shaheen, T.I.; El-Naggar, M.E. Solid state synthesis of starch-capped silver nanoparticles. Int. J. Biol. Macromol. 2016, 87, 70–76. [Google Scholar] [CrossRef]
- Raghavendra, G.M.; Jung, J.; Seo, J. Step-reduced synthesis of starch-silver nanoparticles. Int. J. Biol. Macromol. 2016, 86, 126–128. [Google Scholar] [CrossRef]
- Shapiro, Y.E.; Shapiro, T.I. 1H NMR Self-diffusion study of PVA cryogels containing ethylene glycol and its oligomers. J. Colloid Interface Sci. 1999, 217, 322–327. [Google Scholar] [CrossRef]
- Gupta, P.; Singh, K. Characterization of H3PO4 based PVA complex system. Solid State Ion. 1996, 86, 319–323. [Google Scholar] [CrossRef]
- Ossipov, D.A.; Hilborn, J. Poly (vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules 2006, 39, 1709–1718. [Google Scholar] [CrossRef]
- Dunn, E.; Zhang, X.; Sun, D.; Goosen, M. Synthesis of N-(aminoalkyl) chitosan for microcapsules. J. Appl. Polym. Sci. 1993, 50, 353–365. [Google Scholar] [CrossRef]
- Stoikov, I.I.; Galukhin, A.V.; Zaikov, E.N.; Antipin, I.S. Synthesis and complexation properties of 1, 3-alternate stereoisomers of p-tert-butylthiacalix [4] arenes tetrasubstituted at the lower rim by the phthalimide group. Mendeleev Commun. 2009, 19, 193. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Zamanian, A.; Sangpour, P.; Shabanzadeh, P.; Abdollahi, Y.; Zargar, M. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int. J. Nanomed. 2012, 7, 5603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loo, Y.Y.; Chieng, B.W.; Nishibuchi, M.; Radu, S. Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. Int. J. Nanomed. 2012, 7, 4263. [Google Scholar]
- Smitha, S.; Nissamudeen, K.; Philip, D.; Gopchandran, K. Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 71, 186–190. [Google Scholar] [CrossRef]
- Cobley, C.M.; Skrabalak, S.E.; Campbell, D.J.; Xia, Y. Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 2009, 4, 171–179. [Google Scholar] [CrossRef]
- Mlalila, N.G.; Swai, H.S.; Hilonga, A.; Kadam, D.M. Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli. Nanotechnol. Sci. Appl. 2017, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Pandey, S.K.; Parashar, V.; Mehrotra, G.; Pandey, A.C. Ag/PVA nanocomposites: Optical and thermal dimensions. J. Mater. Chem. 2011, 21, 17154–17159. [Google Scholar] [CrossRef]
- Arokiyaraj, S.; Vincent, S.; Saravanan, M.; Lee, Y.; Oh, Y.K.; Kim, K.H. Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif. Cells Nanomed. Biotechnol. 2017, 45, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, N.; Choudhary, M.; Singhal, G.; Bhagyawant, S.S. SEM studies of saponin silver nanoparticles isolated from leaves of Chenopodium album L. for in vitro anti-acne activity. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 333–341. [Google Scholar] [CrossRef]
- Gopinath, V.; Priyadarshini, S.; Loke, M.F.; Arunkumar, J.; Marsili, E.; MubarakAli, D.; Velusamy, P.; Vadivelu, J. Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab. J. Chem. 2017, 10, 1107–1117. [Google Scholar] [CrossRef] [Green Version]
- Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C 2016, 58, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Bhakya, S.; Muthukrishnan, S.; Sukumaran, M.; Muthukumar, M. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. 2016, 6, 755–766. [Google Scholar] [CrossRef] [Green Version]
Sample Code | Sample Details |
---|---|
Ag–NPs(C) | silver nano particles prepared by chemical method using NaBH4 as reducing agent |
Ag–NPs(G) | silver nano particles prepared by green method via starch capping |
Pristine PVA | unsubstituted poly vinyl alcohol film |
3% Ag–NPs(C)–PVA film | 3% w/w silver nano particles (prepared by chemical method) were loaded into unsubstituted poly vinyl alcohol film |
5% Ag–NPs(C)–PVA film | 5% w/w silver nano particles (prepared by chemical method) were loaded into unsubstituted poly vinyl alcohol film |
3%Ag–NPs(G)–PVA film | 3% w/w silver nano particles (prepared by green method) were loaded into unsubstituted poly vinyl alcohol film |
5%Ag–NPs(G)–PVA film | 5% w/w silver nano particles (prepared by green method) were loaded into unsubstituted poly vinyl alcohol film |
Pristine PA–PVA | As-prepared propyl amine-substituted poly vinyl alcohol film |
3% Ag–NPs(C)-encapsulated PA–PVA | 3% w/w silver nano particles (prepared by chemical method) were encapsulated into propyl amine-substituted poly vinyl alcohol film |
5% Ag–NPs(C)-encapsulated PA–PVA | 5% w/w silver nano particles (prepared by chemical method) were encapsulated into propyl amine-substituted poly vinyl alcohol film |
3% Ag–NPs(G)-encapsulated PA–PVA | 3% w/w silver nano particles (prepared by green method) were encapsulated into propyl amine-substituted poly vinyl alcohol film |
5% Ag–NPs(G)-encapsulated PA–PVA | 5% w/w silver nano particles (prepared by green method) were encapsulated into propyl amine-substituted poly vinyl alcohol film |
Sample | Tensile Strength | Tensile Modulus | Ultimate Strain |
---|---|---|---|
(MPa) | (MPa) | (%) | |
Pristine PVA | 14.2 ± 3 | 21.8 ± 2 | 52.8 ± 5 |
3% Ag–NPs(C)–PVA film | 28.2 ± 5 | 47.5 ± 3 | 98.8 ± 6 |
5% Ag–NPs(C)–PVA film | 18.5 ± 6 | 35.5 ± 3 | 68.2 ± 3 |
3% Ag–NPs(G)–PVA film | 27.5 ± 6 | 31.2 ± 3 | 297.0 ± 5 |
5% Ag–NPs(G)–PVA film | 19.3 ± 7 | 26.1 ± 2 | 158.2 ± 2 |
Pristine PA–PVA | 74.1 ± 5 | 1734.9 ± 3 | 13.2 ± 6 |
3% Ag–NPs(C)-encapsulated PA–PVA | 152.6 ± 4 | 1986.4 ± 4 | 25.4 ± 5 |
5% Ag–NPs(C)-encapsulated PA–PVA | 104 ± 6 | 2278.6 ± 6 | 18.7 ± 7 |
3% Ag–NPs(G)-encapsulated PA–PVA | 147.5 ± 4 | 2037.2 ± 5 | 48.9 ± 7 |
5% Ag–NPs(G)-encapsulated PA–PVA | 168.2 ± 5 | 2468.8 ± 7 | 56.2 ± 7 |
Sample | Inhibition Zone (mm) | |
---|---|---|
Escherichia coli | Staphylococcus aureus | |
Pristine PVA | 0 | 0 |
3% Ag–NPs(C)–PVA film | 6 ± 0.1 | 7 ± 0.3 |
5% Ag–NPs(C)–PVA film | 7 ± 0.15 | 7 ± 0.2 |
3% Ag–NPs(G)–PVA film | 8 ± 0.4 | 9 ± 0.25 |
5% Ag–NPs(G)–PVA film | 11 ± 0.3 | 10 ± 0.3 |
Pristine PA–PVA | 5 ± 0.2 | 4 ± 0.3 |
3% Ag–NPs(C)-encapsulated PA–PVA | 8 ± 0.25 | 8 ± 0.15 |
5% Ag–NPs(C)-encapsulated PA–PVA | 10 ± 0.3 | 9 ± 0.2 |
3% Ag–NPs(G)-encapsulated PA–PVA | 9 ± 0.15 | 10 ± 0.1 |
5% Ag–NPs(G)-encapsulated PA–PVA | 13 ± 0.1 | 11 ± 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, M.; Zafar, H.; Mahmood, A.; Niazi, M.B.K.; Aslam, M.W. Starch-Capped Silver Nanoparticles Impregnated into Propylamine-Substituted PVA Films with Improved Antibacterial and Mechanical Properties for Wound-Bandage Applications. Polymers 2020, 12, 2112. https://doi.org/10.3390/polym12092112
Iqbal M, Zafar H, Mahmood A, Niazi MBK, Aslam MW. Starch-Capped Silver Nanoparticles Impregnated into Propylamine-Substituted PVA Films with Improved Antibacterial and Mechanical Properties for Wound-Bandage Applications. Polymers. 2020; 12(9):2112. https://doi.org/10.3390/polym12092112
Chicago/Turabian StyleIqbal, Mudassir, Hadia Zafar, Azhar Mahmood, Muhammad Bilal Khan Niazi, and Muhammad Waqar Aslam. 2020. "Starch-Capped Silver Nanoparticles Impregnated into Propylamine-Substituted PVA Films with Improved Antibacterial and Mechanical Properties for Wound-Bandage Applications" Polymers 12, no. 9: 2112. https://doi.org/10.3390/polym12092112
APA StyleIqbal, M., Zafar, H., Mahmood, A., Niazi, M. B. K., & Aslam, M. W. (2020). Starch-Capped Silver Nanoparticles Impregnated into Propylamine-Substituted PVA Films with Improved Antibacterial and Mechanical Properties for Wound-Bandage Applications. Polymers, 12(9), 2112. https://doi.org/10.3390/polym12092112