Dynamic Mechanical Behavior of Hierarchical Resin Honeycomb by 3D Printing
Abstract
:1. Introduction
2. Experimental Process
2.1. In Situ Micro-Compression Experimental Process
2.2. Dynamic Experimental Process
3. Results and Discussions
4. Conclusions
- (1)
- Under quasi-static loading, by comparing the experimental curves of the two compression directions, we find that the axial compression bearing capacity of the sample is higher than the radial compression. In future research, we should focus on the axial compression capability of honeycomb.
- (2)
- Both under quasi-static and dynamic loading conditions, the collapse strength of the MHH materials is higher than that of the SHH materials. The mechanical properties of honeycomb materials can be improved by increasing the level of honeycomb cells. Under dynamic loading, the initial collapse strength of the honeycomb material shows a certain strain rate sensitivity, and the strain rate effect of the MHH material is more obvious. The two honeycomb materials with different levels show different strain rate sensitivity, which may be related to the difference of the material microstructure.
- (3)
- As the strain rate increases, the energy absorption and energy absorption efficiency will also increase. In general, the MHH material has more energy absorption than the SHH material.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, M.; Fan, X.; Fang, Q.-Z.; Wang, T. Experimental investigation of the fatigue of closed-cell aluminum alloy foam. Mater. Lett. 2015, 160, 68–71. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, H.; Lu, Z.; Zhou, W. High-speed axial impact of aluminum honeycomb—Experiments and simulations. Compos. Part B Eng. 2014, 56, 1–8. [Google Scholar] [CrossRef]
- Yan, C.; Hao, L.; Hussein, A.; Young, P.; Raymont, D. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater. Des. 2014, 55, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Hohe, J.; Becker, W. Effective elastic properties of triangular grid structures. Compos. Struct. 1999, 45, 131–145. [Google Scholar] [CrossRef]
- Hohe, J.; Beschorner, C.; Becker, W. Effective elastic properties of hexagonal and quadrilateral grid structures. Compos. Struct. 1999, 46, 73–89. [Google Scholar] [CrossRef]
- Xiaomin, Z.; Zhang, L.; Zhang, P. Equivalent constitutive equations of honeycomb material using micro-polar theory to model thermo-mechanical interaction. Compos. Part B Eng. 2012, 43, 3081–3087. [Google Scholar] [CrossRef]
- Mahmoudabadi, M.Z.; Sadighi, M. A theoretical and experimental study on metal hexagonal honeycomb crushing under quasi-static and low velocity impact loading. Mater. Sci. Eng. A 2011, 528, 4958–4966. [Google Scholar] [CrossRef]
- Roy, R.; Nguyen, K.H.; Park, Y.B. Testing and modeling of Nomex (TM) honeycomb sandwich Panels with bolt insert. Compos. Part B Eng. 2014, 56, 762–769. [Google Scholar] [CrossRef]
- Hazizan, A.; Cantwell, W. The low velocity impact response of an aluminium honeycomb sandwich structure. Compos. Part B Eng. 2003, 34, 679–687. [Google Scholar] [CrossRef]
- Zheng, Z.; Yu, J.; Li, J. Dynamic crushing of 2D cellular structures: A finite element study. Int. J. Impact Eng. 2005, 32, 650–664. [Google Scholar] [CrossRef]
- Yamashita, M.; Gotoh, M. Impact behavior of honeycomb structures with various cell specifications—Numerical simulation and experiment. Int. J. Impact Eng. 2005, 32, 618–630. [Google Scholar] [CrossRef]
- Zinno, A.; Fusco, E.; Prota, A.; Manfredi, G. Multiscale approach for the design of composite sandwich structures for train application. Compos. Struct. 2010, 92, 2208–2219. [Google Scholar] [CrossRef]
- Wu, E.; Jiang, W.-S. Axial crush of metallic honeycombs. Int. J. Impact Eng. 1997, 19, 439–456. [Google Scholar] [CrossRef]
- Hedayati, R.; Sadighi, M.; Aghdam, M.; Zadpoor, A.A. Mechanical Properties of Additively Manufactured Thick Honeycombs. Materials 2016, 9, 613. [Google Scholar] [CrossRef] [PubMed]
- Deqiang, S.; Weihong, Z. Mean in-plane plateau stresses of hexagonal honeycomb cores under impact loadings. Compos. Struct. 2009, 91, 168–185. [Google Scholar] [CrossRef]
- Hu, L.; He, X.; Wu, G.; Yu, T. Dynamic crushing of the circular-celled honeycombs under out-of-plane impact. Int. J. Impact Eng. 2015, 75, 150–161. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.-C. The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs. Int. J. Impact Eng. 2009, 36, 98–109. [Google Scholar] [CrossRef]
- Liang, S.; Chen, H. Investigation on the square cell honeycomb structures under axial loading. Compos. Struct. 2006, 72, 446–454. [Google Scholar] [CrossRef]
- Liu, L.; Wang, H.; Guan, Z. Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading. Compos. Struct. 2015, 121, 304–314. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H. Theoretical and numerical investigation on the crush resistance of rhombic and kagome honeycombs. Compos. Struct. 2013, 96, 143–152. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Wen, Z. Experimental and numerical studies on the crush resistance of aluminum honeycombs with various cell configurations. Int. J. Impact Eng. 2014, 66, 48–59. [Google Scholar] [CrossRef]
- Xu, S.; Beynon, J.H.; Ruan, D.; Yu, T.X. Strength enhancement of aluminum honeycombs caused by entrapped air under dynamic out-of-plane compression. Int. J. Impact Eng. 2012, 47, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; You, F.; Yu, T. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs. Mater. Des. 2013, 46, 511–523. [Google Scholar] [CrossRef]
- Deqiang, S.; Zhang, W.; Yanbin, W. Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings. Compos. Struct. 2010, 92, 2609–2621. [Google Scholar] [CrossRef]
- Antolak-Dudka, A.; Płatek, P.; Durejko, T.; Baranowski, P.; Małachowski, J.; Sarzyński, M.; Czujko, T. Static and Dynamic Loading Behavior of Ti6Al4V Honeycomb Structures Manufactured by Laser Engineered Net Shaping (LENSTM) Technology. Materials 2019, 12, 1225. [Google Scholar] [CrossRef] [Green Version]
- Kozior, T.; Mamun, A.; Trabelsi, M.; Wortmann, M.; Sabantina, L.; Ehrmann, A. Electrospinning on 3D Printed Polymers for Mechanically Stabilized Filter Composites. Polymers 2019, 11, 2034. [Google Scholar] [CrossRef] [Green Version]
- Kozior, T.; Blachowicz, T.; Ehrmann, A. Adhesion of three-dimensional printing on textile fabrics: Inspiration from and for other research areas. J. Eng. Fibers Fabr. 2020, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263–1334. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lu, M.; Wang, C.H.; Sun, G.; Li, G. Out-of-plane crashworthiness of bio-inspired self-similar regular hierarchical honeycombs. Compos. Struct. 2016, 144, 1–13. [Google Scholar] [CrossRef]
- Liang, X.; Luo, H.; Mu, Y.; Wu, L.; Lin, H. Experimental study on stress attenuation in aluminum foam core sandwich panels in high-velocity impact. Mater. Lett. 2017, 203, 100–102. [Google Scholar] [CrossRef]
- Deshpande, V.S.; Fleck, N.A. High strain rate compressive behavior of aluminum alloy foams. Int. J. Impact Eng. 2000, 24, 277–298. [Google Scholar] [CrossRef] [Green Version]
- Mukai, T.; Kanahashi, H.; Miyoshi, T.; Mabuchi, M.; Nieh, T.; Higashi, K. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading. Scr. Mater. 1999, 40, 921–927. [Google Scholar] [CrossRef]
- Wang, P.; Xu, S.; Li, Z.; Yang, J.; Zhang, C.; Zheng, H.; Hu, S. Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading. Mater. Sci. Eng. A 2015, 620, 253–261. [Google Scholar] [CrossRef]
- Marc, A.M. Dynamic Behavior of Materials; University of California: San Diego, CA, USA, 1994. [Google Scholar]
- Xu, M.; Xu, Z.; Zhang, Z.; Lei, H.; Bai, Y.; Fang, D. Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies. Int. J. Mech. Sci. 2019, 159, 43–57. [Google Scholar] [CrossRef]
- Sahu, S.; Goel, M.; Mondal, D.; Das, S. High temperature compressive deformation behavior of ZA27–SiC foam. Mater. Sci. Eng. A 2014, 607, 162–172. [Google Scholar] [CrossRef]
- Onck, P.; Andrews, E.; Gibson, L. Size effects in ductile cellular solids. Part I: Modeling. Int. J. Mech. Sci. 2001, 43, 681–699. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Wang, C.; Yu, J.; Reid, S.R.; Harrigan, J.J. Dynamic stress–strain states for metal foams using a 3D cellular model. J. Mech. Phys. Solids 2014, 72, 93–114. [Google Scholar] [CrossRef]
- Smorygo, O.; Marukovich, A.; Mikutski, V.; Gokhale, A.; Reddy, G.J.; Kumar, J.V. High-porosity titanium foams by powder coated space holder compaction method. Mater. Lett. 2012, 83, 17–19. [Google Scholar] [CrossRef]
Resin Type | Tensile Strength (MPa) | Impact Strength (J/m) | Elongation at Break (%) | Viscosity (CPs @ 25 °C) | Hardness |
---|---|---|---|---|---|
Tough | 50–60 | 35–50 | 8–12 | 180–280 | 75–80 (ShoreD) |
Material | Sample Length (mm) | Sample Height (mm) | Honeycomb Thick (mm) | Half–Cell Diameter (mm) | Sample Weight (g) | Relative Density (g/cm3) |
---|---|---|---|---|---|---|
SHH | 2.6 | 4 | 0.07 | 0.14 | 0.010 | 0.369 |
MHH | 6 | 4 | 0.07 | 0.14 | 0.049 | 0.347 |
Style of Honeycomb | Strain Rate/s−1 | Yield Strength/MPa |
---|---|---|
SHH | 0.001 | 15.79 |
500 | 17.1 | |
1000 | 17.57 | |
1500 | 18.4 | |
MHH | 0.001 | 20.03 |
500 | 22.57 | |
1000 | 23.59 | |
1500 | 25.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, H.; Hu, M.; Dai, L. Dynamic Mechanical Behavior of Hierarchical Resin Honeycomb by 3D Printing. Polymers 2021, 13, 19. https://doi.org/10.3390/polym13010019
Hong H, Hu M, Dai L. Dynamic Mechanical Behavior of Hierarchical Resin Honeycomb by 3D Printing. Polymers. 2021; 13(1):19. https://doi.org/10.3390/polym13010019
Chicago/Turabian StyleHong, Huan, Menglei Hu, and Liansong Dai. 2021. "Dynamic Mechanical Behavior of Hierarchical Resin Honeycomb by 3D Printing" Polymers 13, no. 1: 19. https://doi.org/10.3390/polym13010019
APA StyleHong, H., Hu, M., & Dai, L. (2021). Dynamic Mechanical Behavior of Hierarchical Resin Honeycomb by 3D Printing. Polymers, 13(1), 19. https://doi.org/10.3390/polym13010019