Novel Terahertz Spectroscopy Technology for Crystallinity and Crystal Structure Analysis of Cellulose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples
2.3. Analysis of Crystallinity and Crystal Structure
2.3.1. Microtopography Analysis
2.3.2. XRD Analysis
2.3.3. FT-IR Analysis
2.3.4. Terahertz Spectroscopy Analysis
2.3.5. Molecular Vibration Model
3. Results and Discussion
3.1. Microtopography
3.2. Crystallinity from XRD Analysis.
3.3. Crystallinity from FT-IR Analysis
3.4. Crystallinity from THz Analysis
3.5. Calculation of Cellulose Molecular Vibration Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vinokurov, V.; Novikov, A.; Rodnova, V.; Anikushin, B.; Kotelev, M.; Ivanov, E.; Lvov, Y. Cellulose nanofibrils and tubular halloysite as enhanced strength gelation agents. Polymers 2019, 11, 919. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ge, S.; Xia, C.; Mei, C.; Kim, K.-H.; Cai, L.; Smith, L.M.; Lee, J.; Shi, S.Q. Application of intermittent ball milling to enzymatic hydrolysis for efficient conversion of lignocellulosic biomass into glucose. Renew. Sustain. Energy Rev. 2021, 136, 110442. [Google Scholar] [CrossRef]
- Shao, D.; Xia, C.; Cai, L.; Shi, S.; Jiang, D.; Rong, S.; Wang, J. Fabrication of wood fiber-rubber composites with microwave-modified waste rubber powder. In Proceedings of the Fall National Meeting and Exposition of the American Chemical Society (ACS), San Diego, CA, USA, 25–29 August 2019; Volume 258. [Google Scholar]
- Hassan, M.; Abou Zeid, R.E.; Abou-Elseoud, W.S.; Hassan, E.; Berglund, L.; Oksman, K. Effect of unbleached rice straw cellulose nanofibers on the properties of polysulfone membranes. Polymers 2019, 11, 938. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Zhang, S.; Li, F.; Wang, Z.; Li, J.; Xia, C.; Yu, Y.; Cai, L.; Huang, Z. Self-healable and biodegradable soy protein-based protective functional film with low cytotoxicity and high mechanical strength. Chem. Eng. J. 2021, 404, 126505. [Google Scholar] [CrossRef]
- Jin, S.C.; Song, X.S.; Li, K.; Xia, C.L.; Li, J.Z. A mussel-inspired strategy toward antimicrobial and bacterially anti-adhesive soy protein surface. Polym. Compos. 2020, 41, 633–644. [Google Scholar] [CrossRef]
- Okano, M.; Watanabe, S. Internal status of visibly opaque black rubbers investigated by terahertz polarization spectroscopy: Fundamentals and applications. Polymers 2019, 11, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.; Zhang, X.; Cui, H.-L. Terahertz dielectric spectroscopic analysis of polypropylene aging caused by exposure to ultraviolet radiation. Polymers 2019, 11, 2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, D.; Zhang, M.; Song, J.; Wei, D. Calculated terahertz spectra of glycine oligopeptide solutions confined in carbon nanotubes. Polymers 2019, 11, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, M.E.; Hartley, I.D.; Todoruk, T.M. Terahertz applications in the wood products industry. In Handbook of Terahertz Technology for Imaging, Sensing and Communication; Saeedkia, D., Ed.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Cambridge, UK, 2013; pp. 547–557. [Google Scholar] [CrossRef]
- Qiu, G.-H.; Zhang, L.; Shentu, N.-Y. Terahertz and infrared spectroscopic investigation of cellulose. Spectrosc. Spectr. Anal. 2016, 36, 681–685. [Google Scholar] [CrossRef]
- Feng, G.; Ma, Y.; Zhang, M.; Jia, P.; Liu, C.; Zhou, Y. Synthesis of bio-base plasticizer using waste cooking oil and its performance testing in soft poly(vinyl chloride) films. J. Bioresour. Bioprod. 2019, 4, 99–110. [Google Scholar] [CrossRef]
- Wang, Z.; Kang, H.; Liu, H.; Zhang, S.; Xia, C.; Wang, Z.; Li, J. Dual-network nanocross-linking strategy to improve bulk mechanical and water-resistant adhesion properties of biobased wood adhesives. ACS Sustain. Chem. Eng. 2020, 8, 16430–16440. [Google Scholar] [CrossRef]
- Du, S.; Zhang, Y.; Yoshida, K.; Hirakawa, K. Ultrafast rattling motion of a single atom in a fullerene cage sensed by terahertz spectroscopy. Appl. Phys. Express 2020, 13, 105002. [Google Scholar] [CrossRef]
- Chodorow, U.; Parka, J.; Garbat, K.; Palka, N.; Czuprynski, K.; Jaroszewicz, L. Spectral properties of nematic liquid crystal mixtures composed with long and short molecules in THz frequency range. Mol. Cryst. Liq. Cryst. 2012, 561, 74–81. [Google Scholar] [CrossRef]
- Su, W.; Liu, P.; Cai, C.; Ma, H.; Jiang, B.; Xing, Y.; Liang, Y.; Cai, L.; Xia, C.; van Le, Q. Hydrogen production and heavy metal immobilization using hyperaccumulators in supercritical water gasification. J. Hazard. Mater. 2021, 402, 123541. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Lam, S.S.; Sonne, C. Ban unsustainable mink production. Science 2020, 370, 539. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Sun, B.; Jin, Q.; Li, H.; Xia, C.; Wang, H.; Mo, X.; Wu, J. Harnessing electrospun nanofibers to recapitulate hierarchical fibrous structures of meniscus. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020. [Google Scholar] [CrossRef]
- Yan, C.; Yang, B.; Yu, Z. Terahertz time domain spectroscopy for the identification of two cellulosic fibers with similar chemical composition. Anal. Lett. 2013, 46, 946–958. [Google Scholar] [CrossRef]
- Nezadal, M.; Schuer, J.; Schmidt, L.-P. Non-destructive testing of glass fibre reinforced plastics with a synthetic aperture radar in the lower THz region. In 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves, Proceedings of the International Conference on Infrared and Millimeter Waves, Wollongong, NSW, Australia, 23–28 September 2012; IEEE: New York, NY, USA, 2012. [Google Scholar]
- Harris, Z.B.; Virk, A.; Khani, M.E.; Arbab, M.H. Terahertz time-domain spectral imaging using telecentric beam steering and an f-theta scanning lens: Distortion compensation and determination of resolution limits. Opt. Express 2020, 28, 26612–26622. [Google Scholar] [CrossRef]
- Blumenschein, N.; Kadlec, C.; Romanyuk, O.; Paskova, T.; Muth, J.F.; Kadlec, F. Dielectric and conducting properties of unintentionally and Sn-doped beta-Ga2O3 studied by terahertz spectroscopy. J. Appl. Phys. 2020, 127. [Google Scholar] [CrossRef]
- Joerdens, C.; Wietzke, S.; Scheller, M.; Koch, M. Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy. Polym. Test. 2010, 29, 209–215. [Google Scholar] [CrossRef]
- Tao, H.; Amsden, J.J.; Strikwerda, A.C.; Fan, K.; Kaplan, D.L.; Zhang, X.; Averitt, R.D.; Omenetto, F.G. Metamaterial silk composites at terahertz frequencies. Adv. Mater. 2010, 22, 3527–3531. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, Y.; Hou, L.; Ma, C.; Yang, L.; Dong, C.; Wang, Z.; Wang, H.; Guo, J.; Xu, S.; et al. Detection of living cervical cancer cells by transient terahertz spectroscopy. J. Biophotonics 2020. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Tang, J.; Wan, J.; Peng, Y.; Hou, K.; Halat, D.M.; Xiao, L.; Zhang, R.; Lv, X.; Yang, A.; et al. Designing sustainably hierarchical membranes for highly efficient gas separation and storage. Sci. Adv. 2020, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Tang, J.; Xu, J.; Peng, Y.; Chen, S.; Chen, J.; Cui, Y.; Reimer, J.A. Revealing molecular mechanisms in hierarchical nanoporous carbon by nuclear magnetic resonance. Matter 2020, 3, 1–15. [Google Scholar] [CrossRef]
- Skelbaek-Pedersen, A.L.; Anuschek, M.; Vilhelmsen, T.K.; Rantanen, J.; Zeitler, J.A. Non-destructive quantification of fragmentation within tablets after compression from scattering analysis of terahertz transmission measurements. Int. J. Pharm. 2020, 588. [Google Scholar] [CrossRef]
- Patil, M.R.; Ganorkar, S.B.; Patil, A.S.; Shirkhedkar, A.A. Terahertz spectroscopy: Encoding the discovery, instrumentation, and applications toward pharmaceutical prospectives. Crit. Rev. Anal. Chem. 2020. [Google Scholar] [CrossRef]
- Vieira, F.S.; Pasquini, C. Determination of cellulose crystallinity by terahertz-time domain spectroscopy. Anal. Chem. 2014, 86, 3780–3786. [Google Scholar] [CrossRef]
- Yin, M.; Wang, J.; Huang, H.; Huang, Q.; Fu, Z.; Lu, Y. Analysis of flavonoid compounds by terahertz spectroscopy combined with chemometrics. ACS Omega 2020, 5, 18134–18141. [Google Scholar] [CrossRef]
- He, M.; Guo, S. Research on application of terahertz technology in drugs. J. Electron. Meas. Instrum. 2012, 26, 663–672. [Google Scholar] [CrossRef]
- Feng, C.-H.; Otani, C. Terahertz spectroscopy technology as an innovative technique for food: Current state-of-the-art research advances. Crit. Rev. Food Sci. Nutr. 2020. [Google Scholar] [CrossRef]
- Lapuerta, M.; Rodriguez-Fernandez, J.; Patino-Camino, R.; Cova-Bonillo, A.; Monedero, E.; Meziani, Y.M. Determination of optical and dielectric properties of blends of alcohol with diesel and biodiesel fuels from terahertz spectroscopy. Fuel 2020, 274. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, H.-W.; Tominaga, K.; Hayashi, M. Mixing of intermolecular and intramolecular vibrations in optical phonon modes: Terahertz spectroscopy and solid-state density functional theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 386–409. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, H.-W.; Tominaga, K.; Hayashi, M.; Hasunuma, T.; Kondo, A. Application of THz vibrational spectroscopy to molecular characterization and the theoretical fundamentals: An illustration using saccharide molecules. Chem. Asian J. 2017, 12, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.L.; O’Connor, R.T. Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J. Appl. Polym. Sci. 1964, 8, 1311–1324. [Google Scholar] [CrossRef]
- Dorney, T.D.; Baraniuk, R.G.; Mittleman, D.M. Material parameter estimation with terahertz time-domain spectroscopy. J. Opt. Soc. Am. Opt. Image Sci. Vis. 2001, 18, 1562–1571. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Wang, H.-W.; Tominaga, K.; Hayashi, M.; Lee, S.; Nishino, T. Elucidation of chiral symmetry breaking in a racemic polymer system with terahertz vibrational spectroscopy and crystal orbital density functional theory. J. Phys. Chem. Lett. 2016, 7, 4671–4676. [Google Scholar] [CrossRef]
- Ewulonu, C.M.; Liu, X.; Wu, M.; Yong, H. Lignin-containing cellulose nanomaterials: A promising new nanomaterial for numerous applications. J. Bioresour. Bioprod. 2019, 4, 3–10. [Google Scholar]
- Jia, C.; Zhang, Y.; Cui, J.; Gan, L. The antibacterial properties and safety of a nanoparticle-coated parquet floor. Coatings 2019, 9, 4036. [Google Scholar] [CrossRef] [Green Version]
Sample | Crystallinity | ||
---|---|---|---|
XRD | FT-IR | THz | |
WC | 64% | 79% | 73% |
MCC | 72% | 82% | 78% |
W-CNF | 76% | 97% | 85% |
C-CNF | 77% | 98% | 90% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Dong, X.; Chen, G.; Lin, F.; Huang, Z.; Manzo, M.; Mao, H. Novel Terahertz Spectroscopy Technology for Crystallinity and Crystal Structure Analysis of Cellulose. Polymers 2021, 13, 6. https://doi.org/10.3390/polym13010006
Yang R, Dong X, Chen G, Lin F, Huang Z, Manzo M, Mao H. Novel Terahertz Spectroscopy Technology for Crystallinity and Crystal Structure Analysis of Cellulose. Polymers. 2021; 13(1):6. https://doi.org/10.3390/polym13010006
Chicago/Turabian StyleYang, Rui, Xianyin Dong, Gang Chen, Feng Lin, Zhenhua Huang, Maurizio Manzo, and Haiyan Mao. 2021. "Novel Terahertz Spectroscopy Technology for Crystallinity and Crystal Structure Analysis of Cellulose" Polymers 13, no. 1: 6. https://doi.org/10.3390/polym13010006
APA StyleYang, R., Dong, X., Chen, G., Lin, F., Huang, Z., Manzo, M., & Mao, H. (2021). Novel Terahertz Spectroscopy Technology for Crystallinity and Crystal Structure Analysis of Cellulose. Polymers, 13(1), 6. https://doi.org/10.3390/polym13010006