Mitigating Antibiotic Resistance Genes in Wastewater by Sequential Treatment with Novel Nanomaterials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Establishment and Validation of ARG Markers
2.3. qPCR Analysis of ARG Abundance in Wastewater
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pazda, M.; Kumirska, J.; Stepnowski, P.; Mulkiewicz, E. Antibiotic resistance genes identified in wastewater treatment plant systems—A review. Sci. Total Environ. 2019, 697, 134023. [Google Scholar] [CrossRef]
- Pärnänen, K.M.; Narciso-da-Rocha, C.; Kneis, D.; Berendonk, T.U.; Cacace, D.; Do, T.T.; Elpers, C.; Fatta-Kassinos, D.; Henriques, I.; Jaeger, T. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 2019, 5, eaau9124. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.L.; Chu, L.; Wojnárovits, L.; Takács, E. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Sci. Total Environ. 2020, 744, 140997. [Google Scholar] [CrossRef]
- Sousa, J.M.; Macedo, G.; Pedrosa, M.; Becerra-Castro, C.; Castro-Silva, S.; Pereira, M.F.R.; Silva, A.M.T.; Nunes, O.C.; Manaia, C.M. Ozonation and UV254nm radiation for the removal ofmicroorganisms and antibiotic resistance genes fromurbanwastewater. J. Hazard. Mater. 2017, 323, 434–441. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, Y.; Geng, J.; Ren, H.; Zhang, Y.; Ding, L.; Xu, K. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. Sci. Total Environ. 2015, 512–513, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef] [PubMed]
- Karaolia, P.; Michael-Kordatou, I.; Hapeshi, E.; Alexander, J.; Schwartz, T.; Fatta-Kassinos, D. Investigation of the potential of a Membrane BioReactor followed by solar Fenton oxidation to remove antibiotic-related microcontaminants. Chem. Eng. J. 2017, 310, 491–502. [Google Scholar] [CrossRef]
- Bairán, G.; Rebollar-Pérez, G.; Chávez-Bravo, E.; Torres, E. Treatment Processes for Microbial Resistance Mitigation: The Technological Contribution to Tackle the Problem of Antibiotic Resistance. Int. J. Environ. Res. Public Health 2020, 17, 8866. [Google Scholar] [CrossRef]
- Cheriyamundath, S.; Vavilala, S.L. Nanotechnology-based wastewater treatment. Water Environ. J. 2021, 35, 123–132. [Google Scholar] [CrossRef]
- Ma, Y.; Metch, J.W.; Yang, Y.; Pruden, A.; Zhang, T. Shift in antibiotic resistance gene profiles associated with nanosilver during wastewater treatment. FEMS Microbiol. Ecol. 2016, 92, fiw022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venieri, D.; Gounaki, I.; Bikouvaraki, M.; Binas, V.; Zachopoulus, A.; Kiriakidis, G.; Mantzavinos, D. Solar photocatalysis as disinfection technique: Inactivation of Klebsiella pneumoniae in sewage and investigation of changes in antibiotic resistance profile. J. Environ. Manag. 2017, 195, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Mao, Y.; Ding, L. Carbon nanotubes as antimicrobial agents for water disinfection and pathogen control. J. Water Health 2018, 16, 171–180. [Google Scholar] [CrossRef]
- Long, Y.; Li, Z.; Deng, C.; Chen, Z.; Bhattachayya, S.; Li, C. Novel polymeric nanoparticles targeting the lipopolysaccharides of Pseudomonas aeruginosa. Int. J. Pharm. 2016, 502, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Dar, K.K.; Shao, S.; Tan, T.; Lv, Y. Molecularly imprinted polymers for the selective recognition of microorganisms. Biotechnol. Adv. 2020, 45, 107640. [Google Scholar] [CrossRef] [PubMed]
- Gavrila, A.-M.; Zaharia, A.; Paruch, L.; Perrin, F.X.; Sarbu, A.; Olaru, A.G.; Paruch, A.M.; Iordache, T.-V. Molecularly imprinted films and quaternary ammonium-functionalized microparticles working in tandem against pathogenic bacteria in wastewaters. J. Hazard. Mater. 2020, 399, 123026. [Google Scholar] [CrossRef] [PubMed]
- Böckelmann, U.; Dörries, H.H.; Ayuso-Gabella, M.N.; de Marçay, M.S.; Tandoi, V.; Levantesi, C.; Masciopinto, C.; Houtte, E.V.; Szewzyk, U.; Wintgens, T.; et al. Quantitative PCR Monitoring of Antibiotic Resistance Genes and Bacterial Pathogens in Three European Artificial Groundwater Recharge Systems. Appl. Environ. Microbiol. 2009, 75, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Colomer-Lluch, M.; Jofre, J.; Muniesa, M. Quinolone resistance genes (qnrA and qnrS) in bacteriophage particles from wastewater samples and the effect of inducing agents on packaged antibiotic resistance genes. J. Antimicrob. Chemother. 2014, 69, 1265–1274. [Google Scholar] [CrossRef]
- Czekalski, N.; Berthold, T.; Caucci, S.; Egli, A.; Bürgmann, H. Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Front. Microbiol. 2012, 3, 106. [Google Scholar] [CrossRef] [Green Version]
- Volkmann, H.; Schwartz, T.; Bischoff, P.; Kirchen, S.; Obst, U. Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J. Microbiol. Methods 2004, 56, 277–286. [Google Scholar] [CrossRef]
- Barraud, O.; Baclet, M.C.; Denis, F.; Play, M.C. Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons. J. Antimicrob. Chemother. 2010, 65, 1642–1645. [Google Scholar] [CrossRef] [Green Version]
- Koch, G.; Yepes, A.; Forstner, K.U.; Wemser, C.; Stengel, S.T.; Modamio, J.; Ohlsen, K.; Foster, K.R.; Lopez, D. Evolution of Resistance to a Last-Resort Antibiotic in Staphylococcus aureus via Bacterial Competition. Cell 2014, 158, 1060–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McConnell, M.M.; Hansen, L.T.; Jamieson, R.C.; Neudorf, K.D.; Yost, C.K.; Tong, A. Removal of antibiotic resistance genes in two tertiary level municipal wastewater treatment plants. Sci. Total Environ. 2018, 643, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Guo, C.; Lv, J.; Hou, S.; Luo, Y.; Zhang, Y.; Xu, J. Spatiotemporal profile of tetracycline and sulfonamide and their resistance on a catchment scale. Environ. Pollut. 2018, 241, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Munir, M.; Xagoraraki, I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci. Total Environ. 2012, 421–422, 173–183. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Singh, A.; Chowdhary, P.; Pandey, A.; Gupta, P. Occurrence of emerging sulfonamide resistance (sul1 and sul2) associated with mobile integrons-integrase (intI1 and intI2) in riverine systems. Sci. Total Environ. 2021, 751, 142217. [Google Scholar] [CrossRef]
- Gillings, M.R.; Gaze, W.H.; Pruden, A.; Smalla, K.; Tiedje, J.M.; Zhu, Y.G. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 2015, 9, 1269–1279. [Google Scholar] [CrossRef]
- Zheng, W.; Huyan, J.; Tian, Z.; Zhang, Y.; Wen, X. Clinical class 1 integron-integrase gene—A promising indicator to monitor the abundance and elimination of antibiotic resistance genes in an urban wastewater treatment plant. Environ. Intern. 2020, 135, 105372. [Google Scholar] [CrossRef]
- Ju, F.; Li, B.; Ma, L.; Wang, Y.; Huang, D.; Zhang, T. Antibiotic resistance genes and human bacterial pathogens: Co-occurrence, removal, and enrichment in municipal sewage sludge digesters. Water Res. 2016, 91, 1–10. [Google Scholar] [CrossRef]
- Ojemaye, M.O.; Adefisoye, M.A.; Okoh, A.I. Nanotechnology as a viable alternative for the removal of antimicrobial resistance determinants from discharged municipal effluents and associated watersheds: A review. J. Environ. Manag. 2020, 275, 111234. [Google Scholar] [CrossRef]
- Samanta, A.; Medintz, I.L. Nanoparticles and DNA—A powerful and growing functional combination in bionanotechnology. Nanoscale 2016, 8, 9037–9095. [Google Scholar] [CrossRef] [Green Version]
ARG Markers | Resist to Antibiotics/Class | Sequences of Primes and Probes (5′–3′) | Ref. |
---|---|---|---|
mecA | Methicillin, Penicillin/β-lactam | F: CATTGATCGCAACGTTCAATTTAAT | [16] |
R: TGGTCTTTCTGCATTCCTGGA | |||
P: FAM-CTATGATCCCAATCTAACTTCCACATACC-MGBNFQ | |||
ermB | Erythromycin/Macrolides | F: GGATTCTACAAGCGTACCTTGGA | [16] |
R: GCTGGCAGCTTAAGCAATTGCT | |||
P: FAM-CACTAGGGTTGCTCTTGCACACTCAAGTC-MGBNFQ | |||
qnrS | Fluoroquinolones | F: CGACGTGCTAACTTGCGTGA | [17] |
R: GGCATTGTTGGAAACTTGCA | |||
P: FAM-AGTTCATTGAACAGGGTGA-MGBNFQ | |||
sul1 | Sulfonamide | F: CCGTTGGCCTTCCTGTAAAG | [18] |
R: TTGCCGATCGCGTGAAGT | |||
P: FAM-CAGCGAGCCTTGCGGCGG-MGBNFQ | |||
tetO | Tetracycline | F: AAGAAAACAGGAGATTCCAAAACG | [16] |
R: CGAGTCCCCAGATTGTTTTTAGC | |||
P: FAM-ACGTTATTTCCCGTTTATCACGGAAGCG-MGBNFQ | |||
vanA | Vancomycin | F: CTGTGAGGTCGGTTGTGCG | [19] |
R: TTTGGTCCACCTCGCCA | |||
P: FAM-CAACTAACGCGGCACTGTTTCCCAAT-MGBNFQ | |||
blaCTXM | Cefotaxime, Ceftazidime/β-lactam | F: ACCAACGATATCGCGGTGAT | [17] |
R: ACATCGCGACGGCTTTCT | |||
P: FAM-TCGTGCGCCGCTG-MGBNFQ | |||
intI1 | Multidrug resistance | F: GCCTTGATGTTACCCGAGAG | [20] |
R: GATCGGTCGAATGCGTGT | |||
P: FAM-ATTCCTGGCCGTGGTTCTGGGTTTT-MGBNFQ |
Samples | intI1 | blaCTXM | ermB | qnrS | mecA | sul1 | tetO |
---|---|---|---|---|---|---|---|
WW | 2.35 × 107 ± 9.49 | 7.40 × 104 ± 3.76 × 10−1 | 2.71 × 106 ± 1.14 × 101 | 1.67 × 1010 ± 2.74 × 104 | 3.47 × 103 ± 6.67 × 10−2 | 8.14 × 106 ± 3.08 × 101 | 3.69 × 107 ± 1.31 × 102 |
MIP-T | 1.09 × 103 ± 3.03 × 10−3 | 1.03 × 102 ± 4.54 × 10−3 | 3.54 × 102 ± 4.61 × 10−2 | 1.76 × 105 ± 7.07 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
NIP-T | 5.13 × 105 ± 6.51 | 2.87 × 104 ± 7.74 | 1.02 × 105 ± 1.51 | 6.16 × 108 ± 4.90 × 103 | 7.40 × 102 ± 1.03 × 10−2 | 4.21 × 105 ± 8.21 | 1.51 × 106 ± 6.94 × 101 |
MIP-K | 3.91 × 106 ± 8.47 × 101 | 1.12 × 102 ± 3.29 × 10−2 | 1.26 × 105 ± 3.72 | 7.19 × 108 ± 7.21 × 103 | 6.96 × 102 ± 7.67 × 10−2 | 4.57 × 105 ± 8.03 × 101 | 5.92 × 106 ± 4.22 × 101 |
NIP-K | 2.07 × 107 ± 4.03 × 102 | 1.98 × 103 ± 9.42 × 10−1 | 3.56 × 105 ± 1.30 × 101 | 2.71 × 109 ± 7.61 × 10−1 | 9.90 × 102 ± 3.05 × 10−2 | 3.39 × 106 ± 1.17 × 102 | 1.27 × 107 ± 5.84 × 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paruch, L.; Paruch, A.M.; Iordache, T.-V.; Olaru, A.G.; Sarbu, A. Mitigating Antibiotic Resistance Genes in Wastewater by Sequential Treatment with Novel Nanomaterials. Polymers 2021, 13, 1593. https://doi.org/10.3390/polym13101593
Paruch L, Paruch AM, Iordache T-V, Olaru AG, Sarbu A. Mitigating Antibiotic Resistance Genes in Wastewater by Sequential Treatment with Novel Nanomaterials. Polymers. 2021; 13(10):1593. https://doi.org/10.3390/polym13101593
Chicago/Turabian StyleParuch, Lisa, Adam M. Paruch, Tanta-Verona Iordache, Andreea G. Olaru, and Andrei Sarbu. 2021. "Mitigating Antibiotic Resistance Genes in Wastewater by Sequential Treatment with Novel Nanomaterials" Polymers 13, no. 10: 1593. https://doi.org/10.3390/polym13101593
APA StyleParuch, L., Paruch, A. M., Iordache, T. -V., Olaru, A. G., & Sarbu, A. (2021). Mitigating Antibiotic Resistance Genes in Wastewater by Sequential Treatment with Novel Nanomaterials. Polymers, 13(10), 1593. https://doi.org/10.3390/polym13101593