Dynamic Mechanical Behavior of Graphene Oxide Functionalized Curaua Fiber-Reinforced Epoxy Composites: A Brief Report
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Graphene Oxide (GO) Functionalization of Curaua Fibers (CFs)
2.3. Fabrication of Curaua Fiber-Epoxy Matrix Composites
2.4. Dynamic-Mechanical Analysis (DMA)
2.5. Specimens Nomenclature
2.6. Scanning Electron Microscopy (SEM)
3. Results and Discussions
3.1. Storage Modulus (E′)
3.2. Loss Modulus (E″)
3.3. Tangent Delta (tan δ)
3.4. Qualitative Discussion
3.5. Scanning Electron Microscopy (SEM)
3.6. The Cole–Cole Plot
4. Summary and Conclusions
- Dynamic mechanical analyses (DMA) was conducted in both graphene oxide (GO)-functionalized and non-functionalized 20 and 50 vol% curaua fiber (CF) reinforced epoxy matrix (EM) composites. This brief report not only complements other reported properties but also extends the amount of CF in recent investigated EM composites.
- The DMA storage modulus (E′) of 50GOCF/EM was significantly enhanced by more than 250% with respect to the neat EM and more than 90% to 20 GOCF/EM. In the E′ variation with temperature, the transition from glassy to rubbery conditions was slightly increased by the amount of CF, but not affected by GO functionalization.
- The DMA loss modulus (E″) of 50GOCF/EM was enhanced by more than 600% compared to neat EM and 200% to 20GOCF/EM. The E″ peak associated with maximum internal friction was substantially enhanced by more than 300% with respect to the neat EM and by 30% to the 20GOCF/EM.
- The enhancement obtained in E′ and E″ can be attributed to the reinforcement in the viscoelastic stiffness caused by the addition of CF and restriction in EM chain mobility, respectively.
- The damping factor associated with the peak in tangent delta (tan δ) was reduced with the amount of CF and GO functionalization due to the reduction caused to the EM macromolecular chain mobility. Total EM amorphization related to dynamic glass transition temperature (Tg) was impaired by CF addition and GO functionalization.
- Cole–Cole plots of E″ versus E′ revealed an increased distortion from a perfect semicircular graph, which would be associated with a homogeneous cross-linked structural system, with GO-functionalized CF addition to EM. This was assigned to a more heterogeneous structure with impaired epoxy cross-linked bonding.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pappu, A.; Pickering, K.L.; Thakur, V.K. Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Ind. Crop. Prod. 2019, 137, 260–269. [Google Scholar] [CrossRef]
- Irtiseva, K.; Lapkovskis, V.; Mironovs, V.; Ozolins, J.; Thakur, V.K.; Goel, G.; Shishkin, A. Towards Next-Generation Sustainable Composites Made of Recycled Rubber, Cenospheres, and Biobinder. Polymers 2021, 13, 574. [Google Scholar] [CrossRef] [PubMed]
- Ates, B.; Koytepe, S.; Ulu, A.; Gurses, C.; Thakur, V.K. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem. Rev. 2020, 120, 9304–9362. [Google Scholar] [CrossRef] [PubMed]
- Platnieks, O.; Gaidukovs, S.; Barkane, A.; Sereda, A.; Gaidukova, G.; Grase, L.; Laka, M. Bio-based poly (butylene succinate)/microcrystalline cellulose/nanofibrillated cellulose-based sustainable polymer composites: Thermo-mechanical and biodegradation studies. Polymers 2020, 12, 1472. [Google Scholar] [CrossRef]
- Luz, F.S.; Garcia Filho, F.D.C.; Del-Rio, M.T.G.; Nascimento, L.F.C.; Pinheiro, W.A.; Monteiro, S.N. Graphene-incorporated natural fiber polymer composites: A first overview. Polymers 2020, 12, 1601. [Google Scholar] [CrossRef] [PubMed]
- Hussein, S.; Abd-Elnaiem, A.; Ali, N.; Mebed, A. Enhanced thermo-mechanical properties of poly (vinyl alcohol)/poly (vinyl pyrrolidone) polymer blended with nanographene. Curr. Nanosci. 2020, 16, 994–1001. [Google Scholar] [CrossRef]
- Abd-Elnaiem, A.M.; Hussein, S.I.; Assaedi, H.S.; Mebed, A.M. Fabrication and evaluation of structural, thermal, mechanical and optical behavior of epoxy–TEOS/MWCNTs composites for solar cell covering. Pol. Bull. 2020, 1–23. [Google Scholar] [CrossRef]
- Ali, N.A.; Hussein, S.I.; Asafa, T.B.; Abd-Elnaiem, A.M. Mechanical Properties and Electrical Conductivity of Poly (methyl methacrylate)/Multi-walled Carbon Nanotubes Composites. Iranian J. Sci. Technol. Trans. A Sci. 2020, 44, 1567–1576. [Google Scholar] [CrossRef]
- Hussein, S.I.; Abd-Elnaiem, A.M.; Asafa, T.B.; Jaafar, H.I. Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite. Appl. Phys. A 2018, 124, 1–9. [Google Scholar] [CrossRef]
- Allahbakhsh, A. PVC/rice straw/SDBS-modified graphene oxide sustainable Nanocomposites: Melt mixing process and electrical insulation characteristics. Compos. Part A Appl. Sci. Manuf. 2020, 134, 105902. [Google Scholar] [CrossRef]
- Pereira, A.C.; Lima, A.M.; Demosthenes, L.C.D.C.; Oliveira, M.S.; Costa, U.O.; Bezerra, W.B.A.; Anacleto Pinheiro, W. Ballistic performance of ramie fabric reinforcing graphene oxide-incorporated epoxy matrix composite. Polymers 2020, 12, 2711. [Google Scholar] [CrossRef] [PubMed]
- Garcia Filho, F.C.; Luz, F.S.; Oliveira, M.S.; Pereira, A.C.; Costa, U.O.; Monteiro, S.N. Thermal behavior of graphene oxide-coated piassava fiber and their epoxy composites. J. Mater. Res. Technol. 2020, 9, 5343–5351. [Google Scholar] [CrossRef]
- Costa, U.O.; Nascimento, L.F.C.; Garcia, J.M.; Bezerra, W.B.A.; Luz, F.S.; Pinheiro, W.A.; Monteiro, S.N. Mechanical properties of composites with graphene oxide functionalization of either epoxy matrix or curaua fiber reinforcement. J. Mater. Res. Technol. 2020, 9, 13390–13401. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Liang, W.; Wang, J.; Chen, Y. Improved mechanical properties of the graphene oxide modified bamboo-fiber-reinforced polypropylene composites. Pol. Compos. 2020, 41, 3615–3626. [Google Scholar] [CrossRef]
- Sarker, F.; Potluri, P.; Afroj, S.; Koncherry, V.; Novoselov, K.S.; Karim, N. Ultrahigh Performance of Nanoengineered Graphene-Based Natural Jute Fiber Composites. ACS Appl. Mater. Interfaces 2019, 11, 21166–21176. [Google Scholar] [CrossRef]
- Costa, U.O.; Nascimento, L.F.C.; Garcia, J.M.; Monteiro, S.N.; Luz, F.S.; Pinheiro, W.A.; Garcia Filho, F.C. Effect of graphene oxide coating on natural fiber composite for multilayered ballistic armor. Polymers 2019, 11, 1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, F.; Karim, N.; Afroj, S.; Koncherry, V.; Novoselov, K.S.; Potluri, P. High-performance graphene-based natural fiber composites. ACS Appl. Mater. Interfaces 2018, 10, 34502–34512. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, Z.; Lv, W.; Wang, C.C. Graphene oxide decorated sisal fiber/MAPP modified PP composites:Towards high-performance biocomposites. Polym. Compos. 2018, 39, e113–e121. [Google Scholar] [CrossRef]
- Ren, J.; Wang, C.; Zhang, X.; Carey, T.; Chen, K.; Yin, Y.; Torrisi, F. Environmentally friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 2017, 111, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Tissera, N.D.; Wijesena, R.N.; Perera, J.R.; de Silva, K.N.; Amaratunge, G.A. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating. Appl. Surf. Sci. 2015, 324, 455–463. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Lopes, F.P.D.; Barbosa, A.P.; Bevitori, A.B.; da Silva, I.L.A.; da Costa, L.L. Natural lignocellulosic fibers as engineering materials—An overview. Metall. Mater. Trans. A. 2011, 42, 2963. [Google Scholar] [CrossRef] [Green Version]
- Rourke, J.P.; Pandey, P.A.; Moore, J.J.; Bates, M.; Kinloch, I.A.; Young, R.J.; Wilson, N.R. The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets. Angew. Chem. 2011, 123, 3231–3235. [Google Scholar] [CrossRef] [Green Version]
- ASTM International. D7028-07(2015) Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA); ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Luz, F.S.D.; Monteiro, S.N.; Tommasini, F.J. Evaluation of dynamic mechanical properties of PALF and coir fiber reinforcing epoxy composites. Mater. Res. 2018, 21. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Paridah, M.T. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Const. Build. Mater. 2016, 106, 149–159. [Google Scholar] [CrossRef]
- Mohanty, S.; Verma, S.K.; Nayak, S.K. Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos. Sci. Technol. 2006, 66, 538–547. [Google Scholar] [CrossRef]
- Geethamma, V.G.; Kalaprasad, G.; Groeninckx, G.; Thomas, S. Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1499–1506. [Google Scholar] [CrossRef]
- Costa, C.S.M.F.; Fonseca, A.C.; Serra, A.C.; Coelho, J.F.J. Dynamic mechanical thermal analysis of polymer composites reinforced with natural fibers. Polym. Rev. 2016, 56, 362–383. [Google Scholar] [CrossRef]
- Harris, B.; Braddell, O.G.; Almond, D.P.; Lefebvre, C.; Verbist, J. Study of carbon fibre surface treatments by dynamic mechanical analysis. J. Mater. Sci. 1993, 28, 3353–3366. [Google Scholar] [CrossRef]
- Ferry, J.D. Viscoelastic Properties of Polymers, 3rd ed.; Wiley: New York, NY, USA,, 1980. [Google Scholar]
- Landel, R.F.; Nielsen, L.E. Mechanical Properties of Polymers and Composites, 2nd ed.; CRC Press: New York, NY, USA, 1993. [Google Scholar]
Specimen | Nomenclature |
---|---|
Plain Epoxy | EM |
Non-Functionalized 20 vol% Curaua Fiber Reinforced Epoxy matrix composite | 20CF/EM |
Graphene Oxide-Functionalized 20 vol% Curaua Fiber Reinforced Epoxy Matrix Composite | 20 GOCF/EM |
Non-Functionalized 50 vol% Curaua Fiber Reinforced Epoxy matrix composite | 50CF/EM |
Graphene Oxide-Functionalized 50 vol% Curaua Fiber Reinforced Epoxy Matrix Composite | 50GOCF/EM |
DMA Parameter | EM | 20CF/EM | 20GOCF/EM | 50CF/EM | 50GOCF/EM |
---|---|---|---|---|---|
E′ at RT (GPa) | 3.86 | 7.05 | 7.08 | 11.04 | 13.44 |
End of Glassy condition (°C) | 59 | 65 | 61 | 68 | 64 |
Onset of Rubbery condition (°C) | 84 | 96 | 95 | 99 | 96 |
E″ at RT (GPa) | 0.09 | 0.17 | 0.22 | 0.45 | 0.67 |
Maximum Internal friction (GPa) | 0.27 | 0.50 | 0.85 | 1.19 | 1.30 |
Begin glass transition Tg (°C) | 59 | 99 | 82 | 82 | 77 |
Maximum Damping (Dimensionless) | 0.51 | 0.19 | 0.22 | 0.31 | 0.20 |
Dynamic Tg | 121 | 101 | 102 | 95 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, U.O.; Nascimento, L.F.C.; Almeida Bezerra, W.B.; de Oliveira Aguiar, V.; Pereira, A.C.; Monteiro, S.N.; Pinheiro, W.A. Dynamic Mechanical Behavior of Graphene Oxide Functionalized Curaua Fiber-Reinforced Epoxy Composites: A Brief Report. Polymers 2021, 13, 1897. https://doi.org/10.3390/polym13111897
Costa UO, Nascimento LFC, Almeida Bezerra WB, de Oliveira Aguiar V, Pereira AC, Monteiro SN, Pinheiro WA. Dynamic Mechanical Behavior of Graphene Oxide Functionalized Curaua Fiber-Reinforced Epoxy Composites: A Brief Report. Polymers. 2021; 13(11):1897. https://doi.org/10.3390/polym13111897
Chicago/Turabian StyleCosta, Ulisses Oliveira, Lucio Fabio Cassiano Nascimento, Wendell Bruno Almeida Bezerra, Vinícius de Oliveira Aguiar, Artur Camposo Pereira, Sergio Neves Monteiro, and Wagner Anacleto Pinheiro. 2021. "Dynamic Mechanical Behavior of Graphene Oxide Functionalized Curaua Fiber-Reinforced Epoxy Composites: A Brief Report" Polymers 13, no. 11: 1897. https://doi.org/10.3390/polym13111897
APA StyleCosta, U. O., Nascimento, L. F. C., Almeida Bezerra, W. B., de Oliveira Aguiar, V., Pereira, A. C., Monteiro, S. N., & Pinheiro, W. A. (2021). Dynamic Mechanical Behavior of Graphene Oxide Functionalized Curaua Fiber-Reinforced Epoxy Composites: A Brief Report. Polymers, 13(11), 1897. https://doi.org/10.3390/polym13111897