Programmable Invisible Photonic Patterns with Rapid Response Based on Two-Dimensional Colloidal Crystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Two-Dimensional Photonic Crystals
2.3. Preparation of HEMA-PEGDA-Photonic Crystal Composite
2.4. Characterization
3. Results and Discussion
3.1. Monolayer Two-Dimensional Photonic Crystals
3.2. Physicochemical Properties and Morphological Characterization of Regions with Different Photocuring Degrees
3.3. Patterning of Responsive Photonic Crystal Films and the Reflectance Spectra
3.4. Impact of Water on the Micro-Morphology of Responsive Photonic Crystal Patterning
3.5. The Mechanism of Pattern Generation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, S.; Ge, J. Photonic Crystal Based Anti-Counterfeiting Materials. In Photonic Materials for Sensing, Biosensing and Display Devices; Springer: Berlin/Heidelberg, Germany, 2016; pp. 159–188. [Google Scholar]
- Hong, W.; Yuan, Z.; Chen, X. Structural Color Materials for Optical Anticounterfeiting. Small 2020, 16, 1907626. [Google Scholar] [CrossRef]
- Chiarello, G.L.; Zuliani, A.; Ceresoli, D.; Martinazzo, R.; Selli, E. Exploiting the Photonic Crystal Properties of TiO2 Nanotube Arrays To Enhance Photocatalytic Hydrogen Production. ACS Catal. 2016, 6, 1345–1353. [Google Scholar] [CrossRef]
- Lin, W.; Hong, W.; Sun, L.; Yu, D.; Yu, D.; Chen, X. Bioinspired Mesoporous Chiral Nematic Graphitic Carbon Nitride Photocatalysts modulated by Polarized Light. ChemSusChem 2018, 11, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Sun, J.; Xu, L.; Hong, W. Angle-Independent Structurally Colored Materials with Superhydrophobicity and Self-Healing Capability. Adv. Mater. Interfaces 2021, 8, 2001950. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Xie, J.; Li, C.; Li, Y.; Liang, S.; Tian, Z.; Wang, T.; Zhang, H.; Li, H. Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band. Adv. Funct. Mater. 2010, 20, 3784–3790. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, K.; Luo, B.; Hong, W.; Chen, J.; Chen, X. Plasmonic-3D photonic crystals microchip for surface enhanced Raman spectroscopy. Biosens. Bioelectron. 2019, 143, 111596. [Google Scholar] [CrossRef]
- Hou, J.; Li, M.; Song, Y. Patterned colloidal photonic crystals. Angew. Chem. Int. Ed. 2018, 57, 2544–2553. [Google Scholar] [CrossRef]
- Tan, A.T.L.; Beroz, J.; Kolle, M.; Hart, A.J. Direct-Write Freeform Colloidal Assembly. Adv. Mater. 2018, 30, 1803620. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, L.; Yang, M.; Chen, X.; Chen, X.; Hong, W. Highly Stretchable Photonic Crystal Hydrogels for a Sensitive Mechanochromic Sensor and Direct Ink Writing. Chem. Mater. 2019, 31, 8918–8926. [Google Scholar] [CrossRef]
- Zhao, T.H.; Parker, R.M.; Williams, C.A.; Lim, K.T.P.; Frka-Petesic, B.; Vignolini, S. Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays. Adv. Funct. Mater. 2018, 29, 1804531. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Zhao, Y.; Cheng, Y.; Xie, Z.; Rong, F.; Li, J.; Wang, B.; Fu, D.; Gu, Z. Tailoring colloidal photonic crystals with wide viewing angles. Small 2013, 9, 2266–2271. [Google Scholar] [CrossRef]
- Du, X.; Li, T.; Li, L.; Zhang, Z.; Wu, T. Water as a colorful ink: Transparent, rewritable photonic coatings based on colloidal crystals embedded in chitosan hydrogel. J. Mater. Chem. C 2015, 3, 3542–3546. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Y.; Ji, W.-Q.; Zhu, Z.; Wang, C.-F.; Chen, S. Ultrasensitive responsive photonic crystal films derived from the assembly between similarly charged colloids and substrates towards trace electrolyte sensing. J. Mater. Chem. C 2016, 4, 6750–6755. [Google Scholar] [CrossRef]
- Dong, X.; Wu, P.; Schaefer, C.G.; Zhang, L.; Finlayson, C.E.; Wang, C. Solvatochromism based on structural color: Smart polymer composites for sensing and security. Mater. Des. 2018, 160, 417–426. [Google Scholar] [CrossRef]
- Lee, H.S.; Shim, T.S.; Hwang, H.; Yang, S.-M.; Kim, S.-H. Colloidal Photonic Crystals toward Structural Color Palettes for Security Materials. Chem. Mater. 2013, 25, 2684–2690. [Google Scholar] [CrossRef]
- Kragt, A.J.J.; Zuurbier, N.C.M.; Broer, D.J.; Schenning, A. Temperature-Responsive, Multicolor-Changing Photonic Polymers. ACS Appl. Mater. Interfaces 2019, 11, 28172–28179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Shi, X.; Schenning, A.P.H.J.; Zhou, G.; Haan, L.T. A Patterned Mechanochromic Photonic Polymer for Reversible Image Reveal. Adv. Mater. Interfaces 2020, 7, 1901878. [Google Scholar] [CrossRef]
- Zhang, P.; Kragt, A.J.J.; Schenning, A.P.H.J.; de Haan, L.T.; Zhou, G. An easily coatable temperature responsive cholesteric liquid crystal oligomer for making structural colour patterns. J. Mater. Chem. C 2018, 6, 7184–7187. [Google Scholar] [CrossRef]
- Ding, T.; Luo, L.; Wang, H.; Chen, L.; Liang, K.; Clays, K.; Song, K.; Yang, G.; Tung, C.-H. Patterning and pixelation of colloidal photonic crystals for addressable integrated photonics. J. Mater. Chem. 2011, 21, 11330–11334. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, S.H.; Hwang, H.; Sim, J.Y.; Yang, S.M. Controlled pixelation of inverse opaline structures towards reflection-mode displays. Adv. Mater. 2014, 26, 2391–2397. [Google Scholar] [CrossRef]
- Kang, H.; Lee, J.-S.; Chang, W.S.; Kim, S.-H. Liquid-Impermeable Inverse Opals with Invariant Photonic Bandgap. Adv. Mater. 2015, 27, 1282–1287. [Google Scholar] [CrossRef]
- Niu, W.; Zhao, K.; Qu, L.; Zhang, S. Rewritable and highly stable photonic patterns for optical storage and display enabled by direct-pressure-programmed shape memory photonic crystals. J. Mater. Chem. C 2018, 6, 8385–8394. [Google Scholar] [CrossRef]
- Schedl, A.E.; Howell, I.; Watkins, J.J.; Schmidt, H.W. Gradient Photonic Materials Based on One-Dimensional Polymer Photonic Crystals. Macromol. Rapid Commun. 2020, 41, 2000069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Hong, W. Mechanochromism of Structural-Colored Materials. Adv. Opt. Mater. 2020, 8, 2000984. [Google Scholar] [CrossRef]
- Hu, H.; Zhong, H.; Chen, C.; Chen, Q. Magnetically responsive photonic watermarks on banknotes. J. Mater. Chem. C 2014, 2, 3695–3702. [Google Scholar] [CrossRef]
- Xuan, R.; Ge, J. Photonic printing through the orientational tuning of photonic structures and its application to anticounterfeiting labels. Langmuir 2011, 27, 5694–5699. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ge, J.; Kim, J.; Choi, S.-E.; Lee, H.; Lee, H.; Park, W.; Yin, Y.; Kwon, S. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat. Photonics 2009, 3, 534–540. [Google Scholar] [CrossRef]
- Chen, J.; Xu, L.; Lin, X.; Chen, R.; Yu, D.; Hong, W.; Zheng, Z.; Chen, X. Self-healing responsive chiral photonic films for sensing and encoding. J. Mater. Chem. C 2018, 6, 7767–7775. [Google Scholar] [CrossRef]
- Bai, L.; He, Y.; Zhou, J.; Lim, Y.; Mai, V.C.; Chen, Y.; Hou, S.; Zhao, Y.; Zhang, J.; Duan, H. Responsive Amorphous Photonic Structures of Spherical/Polyhedral Colloidal Metal–Organic Frameworks. Adv. Opt. Mater. 2019, 7, 1900522. [Google Scholar] [CrossRef]
- Zhong, K.; Li, J.; Liu, L.; Van Cleuvenbergen, S.; Song, K.; Clays, K. Instantaneous, Simple, and Reversible Revealing of Invisible Patterns Encrypted in Robust Hollow Sphere Colloidal Photonic Crystals. Adv. Mater. 2018, 30, 1707246. [Google Scholar] [CrossRef]
- Chen, R.; Feng, D.; Chen, G.; Chen, X.; Hong, W. Re-Printable Chiral Photonic Paper with Invisible Patterns and Tunable Wettability. Adv. Funct. Mater. 2021, 31, 2009916. [Google Scholar] [CrossRef]
- Vogel, N.; Belisle, R.A.; Hatton, B.; Wong, T.-S.; Aizenberg, J. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nat. Commun. 2013, 4, 2176. [Google Scholar] [CrossRef] [Green Version]
- Vogel, N.; Goerres, S.; Landfester, K.; Weiss, C.K. A Convenient Method to Produce Close- and Non-close-Packed Monolayers using Direct Assembly at the Air-Water Interface and Subsequent Plasma-Induced Size Reduction. Macromol. Chem. Phys. 2011, 212, 1719–1734. [Google Scholar] [CrossRef]
- Zhan, H.; Chen, Y.; Liu, Y.; Lau, W.; Bao, C.; Li, M.; Lu, Y.; Mei, J.; Hui, D. Precision-Trimming 2D Inverse-Opal Lattice on Elastomer to Ordered Nanostructures with Variable Size and Morphology. Langmuir 2017, 33, 4881–4889. [Google Scholar] [CrossRef] [PubMed]
- Von Freymann, G.; Kitaev, V.; Lotsch, B.V.; Ozin, G.A. Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 2013, 42, 2528–2554. [Google Scholar] [CrossRef] [Green Version]
- Umh, H.N.; Yu, S.; Kim, Y.H.; Lee, S.Y.; Yi, J. Tuning the Structural Color of a 2D Photonic Crystal Using a Bowl-like Nanostructure. ACS Appl. Mater. Interfaces 2016, 8, 15802–15808. [Google Scholar] [CrossRef]
- Kinoshita, S.; Yoshioka, S. Structural colors in nature: The role of regularity and irregularity in the structure. ChemPhysChem 2005, 6, 1442–1459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.T.; Chao, X.; Liu, X.; Asher, S.A. Two-dimensional array Debye ring diffraction protein recognition sensing. Chem. Commun. 2013, 49, 6337–6339. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Zentel, R.; Maka, T.; Romanov, S.G.; Sotomayor Torres, C. Photonic crystal films with high refractive index contrast. Adv. Mater. 2000, 12, 1499–1503. [Google Scholar] [CrossRef]
Area | Contact Angle of Upper Surface (°) | Contact Angle of Lower Surface (°) | ||||
---|---|---|---|---|---|---|
3 min | 4 min | 6 min | 3 min | 4 min | 6 min | |
Masked | 50.6 | 54 | 53.6 | 58 | 60.2 | 88.2 |
Unmasked | 68.1 | 75.5 | 75.1 | 89.6 | 93.5 | 92.3 |
Dry (nm) | Partial Swelling (nm) | |
---|---|---|
Unmasked area | 1183.89 | 1288.23 |
Masked area | 1178.79 | 1349.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Zheng, Z.; Yu, D.; Hong, W.; Liu, H.; Chen, X. Programmable Invisible Photonic Patterns with Rapid Response Based on Two-Dimensional Colloidal Crystals. Polymers 2021, 13, 1926. https://doi.org/10.3390/polym13121926
Liu N, Zheng Z, Yu D, Hong W, Liu H, Chen X. Programmable Invisible Photonic Patterns with Rapid Response Based on Two-Dimensional Colloidal Crystals. Polymers. 2021; 13(12):1926. https://doi.org/10.3390/polym13121926
Chicago/Turabian StyleLiu, Naiyu, Zhikun Zheng, Dingshan Yu, Wei Hong, Hailu Liu, and Xudong Chen. 2021. "Programmable Invisible Photonic Patterns with Rapid Response Based on Two-Dimensional Colloidal Crystals" Polymers 13, no. 12: 1926. https://doi.org/10.3390/polym13121926
APA StyleLiu, N., Zheng, Z., Yu, D., Hong, W., Liu, H., & Chen, X. (2021). Programmable Invisible Photonic Patterns with Rapid Response Based on Two-Dimensional Colloidal Crystals. Polymers, 13(12), 1926. https://doi.org/10.3390/polym13121926