Hydrogels Based on Poly([2-(acryloxy)ethyl] Trimethylammonium Chloride) and Nanocellulose Applied to Remove Methyl Orange Dye from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Hydrogels
2.3. Experimental Design
2.4. Theory Section: Determination of Yield of the Reaction, Cross-Linking Degree, and Water Absorption Capacity
2.4.1. Determination of the Reaction Yield
2.4.2. Determination of Water Absorption Capacity
2.4.3. Determination of the Effective Cross-Link Density of a Cross-Linked Structure
2.5. Physicochemical Characterization
2.5.1. Fourier Transform Infrared (FTIR) Spectroscopy
2.5.2. Scanning Electron Microscopy (SEM)
2.5.3. Thermogravimetric Analyses (TGA)
2.6. Adsorption Capacity of MO
2.7. Adsorption Capacity of MO
2.8. Kinetic Model
3. Results
3.1. Synthesis of Hydrogels Modifying the Amount of Cross-Linker, Initiator, and CNF
3.1.1. Yield of the Reaction
3.1.2. Water Absorption Capacity
3.1.3. Effective Cross-Link Density of a Cross-Linked Structure
3.2. Statistical Analysis
3.3. Physicochemical Characterization
3.3.1. Fourier Transformed Infrared Spectroscopy
3.3.2. Morphological Analysis by Scanning Electron Microscopy
3.3.3. Thermogravimetric Analysis
3.4. Adsorption Capacity of Methyl Orange Dye by Hydrogels
3.4.1. Effect of pH on MO Removal
3.4.2. Adsorption as a Function of MO Concentration
3.4.3. Kinetic Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senthil Kumar, P.; Janet Joshiba, G.; Femina, C.C.; Varshini, P.; Priyadharshini, S.; Arun Karthick, M.S.; Jothirani, R. A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalin. Water Treat. 2019, 172, 395–416. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Vieira, C.L.Z.; Wolfson, J.M.; Pingtian, G.; Huang, S. Review on the treatment of organic pollutants in water by ultrasonic technology. Ultrason. Sonochem. 2019, 55, 273–278. [Google Scholar] [CrossRef]
- Pauletto, P.S.; Gonçalves, J.O.; Pinto, L.A.A.; Dotto, G.L.; Salau, N.P.G. Single and competitive dye adsorption onto chitosan–based hybrid hydrogels using artificial neural network modeling. J. Colloid Interface Sci. 2020, 560, 722–729. [Google Scholar] [CrossRef]
- Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, N.R. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 2021, 9, 105012. [Google Scholar] [CrossRef]
- Shakoor, S.; Nasar, A. Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent. J. Taiwan Inst. Chem. Eng. 2016, 66, 154–163. [Google Scholar] [CrossRef]
- Bharathiraja, B.; Aberna, E.S.I.; Iyyappan, J.; Varjani, S. Itaconic acid: An effective sorbent for removal of pollutants from dye industry effluents. Curr. Opin. Environ. Sci. Health 2019, 12, 6–17. [Google Scholar] [CrossRef]
- Sejie, F.P.; Nadiye-tabbiruka, M.S. Removal of Methyl Orange (MO) from Water by adsorption onto Modified Local Clay (Kaolinite). Phys. Chem. 2016, 6, 39–48. [Google Scholar]
- Wu, L.; Liu, X.; Lv, G.; Zhu, R.; Tian, L.; Liu, M.; Li, Y.; Rao, W.; Liu, T.; Liao, L. Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different structures. Sci. Rep. 2021, 11, 10640. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, P.; Ramkumar, K.; Pandi, K.; Fayyaz, A.; Meenakshi, S.; Park, C.M. Effective removal of Cr (VI) and methyl orange from the aqueous environment using two-dimensional (2D) Ti3C2Tx MXene nanosheets. Ceram. Int. 2021, 47, 3692–3698. [Google Scholar] [CrossRef]
- da Silva, R.J.; Mojica-sánchez, L.C.; Gorza, F.D.S.; Pedro, G.C.; Maciel, B.G.; Ratkovski, G.P.; da Rocha, H.D.; do Nascimento, K.T.O.; Medina-llamas, J.C.; Chávez-Guajardo, A.E.; et al. Kinetics and thermodynamic studies of Methyl Orange removal by polyvinylidene fluoride-PEDOT mats. J. Environ. Sci. 2021, 100, 62–73. [Google Scholar] [CrossRef]
- Kgatle, M.; Sikhwivhilu, K.; Ndlovu, G.; Moloto, N. Degradation Kinetics of Methyl Orange Dye in Water Using trimetallic Fe/Cu/Ag nanoparticles. Catalysts 2021, 11, 428. [Google Scholar] [CrossRef]
- Neethu, N.; Choudhury, T. Treatment of Methylene Blue and Methyl Orange Dyes in Wastewater by Grafted Titania Pillared Clay Membranes. Recent Pat. Nanotechnol. 2018, 12, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Yönten, V.; Sanyürek, N.K.; Kivanç, M.R. A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Vitis vinifera L. Surf. Interfaces 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Maruthanayagam, A.; Mani, P.; Kaliappan, K.; Chinnappan, S. In vitro and In silico Studies on the Removal of Methyl Orange from Aqueous Solution Using Oedogonium subplagiostomum AP1. Water Air Soil Pollut. 2020, 231, 232. [Google Scholar] [CrossRef]
- Makeswari, M.; Saraswathi, P. Photo catalytic degradation of methylene blue and methyl orange from aqueous solution using solar light onto chitosan bi-metal oxide composite. SN Appl. Sci. 2020, 2. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, E.A.; Selim, A.Q.; Ahmed, S.A.; Sellaoui, L.; Bonilla-Petriciolet, A.; Erto, A.; Li, Z.; Li, Y.; Seliem, M.K. H2O2-activated anthracite impregnated with chitosan as a novel composite for Cr (VI) and methyl orange adsorption in single-compound and binary systems: Modeling and mechanism interpretation. Chem. Eng. J. 2020, 380, 122445. [Google Scholar] [CrossRef]
- Topuz, F.; Holtzl, T.; Szekely, G. Scavenging organic micropollutants from water with nanofibrous hypercrosslinked cyclodextrin membranes derived from green resources. Chem. Eng. J. 2021, 419, 129443. [Google Scholar] [CrossRef]
- Borsagli, F.G.L.M.; Ciminelli, V.S.T.; Ladeira, C.L.; Haas, D.J.; Lage, A.P.; Mansur, H.S. Multi-functional eco-friendly 3D scaffolds based on N-acyl thiolated chitosan for potential adsorption of methyl orange and antibacterial activity against Pseudomonas aeruginosa. J. Environ. Chem. Eng. 2019, 7, 103286. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Z.; Yin, J.; He, C.; Zhao, W.; Zhao, C. Fast and environmental-friendly approach towards uniform hydrogel particles with ultrahigh and selective removal of anionic dyes. J. Environ. Chem. Eng. 2020, 8, 104352. [Google Scholar] [CrossRef]
- Onder, A.; Ilgin, P.; Ozay, H.; Ozay, O. Removal of dye from aqueous medium with pH-sensitive poly chloride-co-1-vinyl-2-pyrrolidone] cationic hydrogel. J. Environ. Chem. Eng. 2020, 8, 104436. [Google Scholar] [CrossRef]
- Dalalibera, A.; Vilela, B.P.; Vieira, T.; Becegato, A.V.; Paulino, T.A. Removal and selective separation of synthetic dyes from water using a polyacrylic acid-based hydrogel: Characterization, isotherm, kinetic, and thermodynamic data. J. Environ. Chem. Eng. 2020, 8, 104465. [Google Scholar] [CrossRef]
- Dax, D.; Chávez, M.S.; Xu, C.; Willför, S.; Mendonça, R.T.; Sánchez, J. Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions. Carbohydr. Polym. 2014, 111, 797–805. [Google Scholar] [CrossRef]
- Alammar, A.; Park, S.; Ibrahim, I.; Arun, D.; Holtzl, T.; Dumée, L.F.; Ngee, H.; Szekely, G. Architecting neonicotinoid-scavenging nanocomposite hydrogels for environmental remediation. Appl. Mater. Today 2020, 21, 100878. [Google Scholar] [CrossRef]
- Singh, N.; Kumari, S.; Goyal, N.; Khan, S. Al2O3/GO cellulose based 3D-hydrogel for efficient fluoride removal from water. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100444. [Google Scholar]
- Hameed, A.; Khurshid, S.; Adnan, A. Synthesis and characterization of carboxymethyl cellulose based hydrogel and its applications on water treatment. Desalin. Water Treat. 2020, 196, 214–227. [Google Scholar] [CrossRef]
- Chen, X.; Song, Z.; Li, S.; Thang, N.T.; Gao, X.; Gong, X.; Guo, M. Facile one-pot synthesis of self-assembled nitrogen-doped carbon dots/cellulose nanofibril hydrogel with enhanced fluorescence and mechanical properties. Green Chem. 2020, 22, 3296–3308. [Google Scholar] [CrossRef]
- Santander, P.; Oyarce, E.; Sánchez, J. New insights in the use of a strong cationic resin in dye adsorption. Water Sci. Technol. 2020, 81, 773–780. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Korpinen, R.; Mikkonen, K.S.; Willför, S.; Xu, C. Nanofibrillated cellulose originated from birch sawdust after sequential extractions: A promising polymeric material from waste to films. Cellulose 2014, 21, 2587–2598. [Google Scholar] [CrossRef]
- Dax, D.; Chávez Bastidas, M.S.; Honorato, C.; Liu, J.; Spoljaric, S.; Seppälä, J.; Mendonça, R.T.; Xu, C.; Willför, S.; Sánchez, J. Tailor-made hemicellulose-based hydrogels reinforced with nanofibrillated cellulose. Nord. Pulp Pap. Res. J. 2015, 30, 373–384. [Google Scholar] [CrossRef]
- Das, A.K.; Dewanjee, S. Optimization of Extraction Using Mathematical Models and Computation. In Computational phytochemistry; Elsevier: Kolkata, India, 2018; pp. 75–106. [Google Scholar]
- Sen, M.; Yakar, A.; Güven, O. Determination of average molecular weight between cross-links (M(c)) from swelling behaviours of diprotic acid-containing hydrogels. Polymer (Guildf) 1999, 40, 2969–2974. [Google Scholar] [CrossRef]
- Zu, G.; Shen, J.; Zou, L.; Wang, F.; Wang, X.; Zhang, Y.; Yao, X. Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon N. Y. 2016, 99, 203–211. [Google Scholar] [CrossRef]
- Ben Ammar, N.E.; Saied, T.; Barbouche, M.; Hosni, F.; Hamzaoui, A.H.; Şen, M. A comparative study between three different methods of hydrogel network characterization: Effect of composition on the crosslinking properties using sol–gel, rheological and mechanical analyses. Polym. Bull. 2018, 75, 3825–3841. [Google Scholar] [CrossRef]
- Mahmudi, N.; Şen, M.; Rendevski, S.; Güven, O. Radiation synthesis of low swelling acrylamide based hydrogels and determination of average molecular weight between cross-links. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2007, 265, 375–378. [Google Scholar] [CrossRef]
- Şen, M.; Hayrabolulu, H. Radiation synthesis and characterisation of the network structure of natural/synthetic double-network superabsorbent polymers. Radiat. Phys. Chem. 2012, 81, 1378–1382. [Google Scholar] [CrossRef]
- Wang, B.; Yang, X.; Ma, L.; Zhai, L.; Xuan, J.; Liu, C.; Bai, Z. Ultra-high efficient pH induced selective removal of cationic and anionic dyes from complex coexisted solution by novel amphoteric biocomposite microspheres. Sep. Purif. Technol. 2020, 231, 115922. [Google Scholar] [CrossRef]
- Mouni, L.; Belkhiri, L.; Bollinger, J.; Bouzaza, A.; Assadi, A.; Tirri, A.; Dahmoune, F.; Madani, K.; Remini, H. Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Appl. Clay Sci. 2018, 153, 38–45. [Google Scholar] [CrossRef]
- Zhou, A.; Chen, W.; Liao, L.; Xie, P.; Zhang, T.C.; Wu, X.; Feng, X. Comparative adsorption of emerging contaminants in water by functional designed magnetic poly(N-isopropylacrylamide)/chitosan hydrogels. Sci. Total Environ. 2019, 671, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, Z.; Wu, W.; Jing, Y.; Dai, H.; Fang, G. Nanocellulose/Poly(2-(dimethylamino)ethyl methacrylate)Interpenetrating polymer network hydrogels for removal of Pb(II) and Cu(II) ions. Colloids Surf. Physicochem. Eng. Asp. 2018, 538, 474–480. [Google Scholar] [CrossRef]
- Li, J.; Zuo, K.; Wu, W.; Xu, Z.; Yi, Y.; Jing, Y.; Dai, H.; Fang, G. Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II). Carbohydr. Polym. 2018, 196, 376–384. [Google Scholar] [CrossRef]
- Zhang, F.; Ren, H.; Tong, G.; Deng, Y. Ultra-lightweight poly (sodium acrylate) modified TEMPO-oxidized cellulose nanofibril aerogel spheres and their superabsorbent properties. Cellulose 2016, 23, 3665–3676. [Google Scholar] [CrossRef]
- Sánchez, J.; Mendoza, N.; Rivas, B.L.; Basáez, L.; Santiago-García, J.L. Preparation and characterization of water-soluble polymers and their utilization in chromium sorption. J. Appl. Polym. Sci. 2017, 134, 45355. [Google Scholar] [CrossRef]
- Tapiero, Y.; Sánchez, J.; Rivas, B.L. Ion-selective interpenetrating polymer networks supported inside polypropylene microporous membranes for the removal of chromium ions from aqueous media. Polym. Bull. 2016, 73, 989–1013. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Teng, A.; Liu, A. Mechanical reinforcement of gelatin hydrogel with nanofiber cellulose as a function of percolation concentration. Int. J. Biol. Macromol. 2017, 103, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Tanan, W.; Panichpakdee, J.; Saengsuwan, S. Novel biodegradable hydrogel based on natural polymers: Synthesis, characterization, swelling/reswelling and biodegradability. Eur. Polym. J. 2019, 112, 678–687. [Google Scholar] [CrossRef]
- Lubis, R.; Wirjosentono, B.; Eddyanto; Septevani, A.A. Preparation, characterization and antimicrobial activity of grafted cellulose fiber from durian rind waste. Colloids Surf. Physicochem. Eng. Asp. 2020, 604, 125311. [Google Scholar] [CrossRef]
- Li, I.; Huang, G.; Tsai, C.; Chen, Y.; Hong, M.; Tsai, T. Ammonium nitrogen adsorption from aqueous solution by poly(sodium acrylate)s: Effect on the amount of crosslinker and initiator. J. Appl. Polym. Sci. 2020, 137, 49581. [Google Scholar] [CrossRef]
- Kang, S.; Qin, L.; Zhao, Y.; Wang, W.; Zhang, T.; Yang, L.; Rao, F.; Song, S. Enhanced removal of methyl orange on exfoliated montmorillonite/chitosan gel in presence of methylene blue. Chemosphere 2020, 238, 124693. [Google Scholar] [CrossRef]
- Zhai, L.; Bai, Z.; Zhu, Y.; Wang, B.; Luo, W. Fabrication of chitosan microspheres for efficient adsorption of methyl orange. Chin. J. Chem. Eng. 2018, 26, 657–666. [Google Scholar] [CrossRef]
- Azam, K.; Raza, R.; Shezad, N.; Shabir, M.; Yang, W.; Ahmad, N.; Shafiq, I.; Akhter, P.; Razzaq, A.; Hussain, M. Development of recoverable magnetic mesoporous carbon adsorbent for removal of methyl blue and methyl orange from wastewater. J. Environ. Chem. Eng. 2020, 8, 104220. [Google Scholar] [CrossRef]
- Oyarce, E.; Pizarro, G.D.C.; Oyarzún, D.P.; Martin-Trasanco, R.; Sánchez, J. Adsorption of methylene blue in aqueous solution using hydrogels based on 2-hydroxyethyl methacrylate copolymerized with itaconic acid or acrylic acid. Mater. Today Commun. 2020, 25, 101324. [Google Scholar] [CrossRef]
- Zeng, L.; Xie, M.; Zhang, Q.; Kang, Y.; Guo, X.; Xiao, H.; Peng, Y.; Luo, J. Chitosan/organic rectorite composite for the magnetic uptake of methylene blue and methyl orange. Carbohydr. Polym. 2015, 123, 89–98. [Google Scholar] [CrossRef]
- Shah, M.P.; Patel, K.A.; Nair, S.S.; Darji, A.M. Microbial decolourization of methyl orange dye by Pseudomonas spp. OA Biotechnol. 2013, 1, 54–59. [Google Scholar]
- Saeed, M.; Usman, M.; ul Haq, A. Catalytic Degradation of Organic Dyes in Aqueous Medium. In Photochemistry and Photophysics-Fundamentals to Applications; IntechOpen: London, UK, 2018; Volume 13, p. 197. [Google Scholar]
- Sarayu, K.; Sandhya, S. Aerobic Biodegradation Pathway for Remazol Orange by Pseudomonas aeruginosa. Appl. Biochem. Biotechnol. 2010, 160, 1241–1253. [Google Scholar] [CrossRef]
- Aouni, A.; Fersi, C.; Cuartas-uribe, B.; Bes-pía, A.; Alcaina-miranda, M.I.; Dhahbi, M. Reactive dyes rejection and textile effluent treatment study using ultra filtration and nano filtration processes. Desalination 2012, 297, 87–96. [Google Scholar] [CrossRef]
- Bandala, E.R.; Pel, M.A.; Garc, A.J.; Salgado, M.D.J.; Moeller, G. Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes. Chem. Eng. Process. Process Intensif. 2008, 47, 169–176. [Google Scholar] [CrossRef]
- Singh, T.; Singhal, R. Reuse of a Waste Adsorbent Poly (AAc/AM/SH )-Cu Superabsorbent Hydrogel, for the Potential Phosphate Ion Removal from Waste Water: Matrix Effects, Adsorption Kinetics, and Thermodynamic Studies. J. Appl. Polym. Sci. 2013, 9, 3126–3139. [Google Scholar] [CrossRef]
- Alsaiari, N.S.; Amari, A.; Katubi, K.; Alzahrani, F.; Rebah, F.B.; Tahoon, M.A. Innovative Magnetite Based Polymeric Nanocomposite for Simultaneous Removal of Methyl Orange and Hexavalent Chromium from Water. Processes 2021, 9, 576. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, R.; Wang, J. Adsorption of methyl orange from aqueous solution using chitosan/diatomite composite. Water Sci. Technol. 2017, 57, 1633–1642. [Google Scholar] [CrossRef] [PubMed]
- Annadurai, G.; Juang, R.; Lee, D. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 2002, B92, 263–274. [Google Scholar] [CrossRef]
Levels | − | + | 0 | ||
---|---|---|---|---|---|
3 Factors | MBA (mol%) | A | 4 | 8 | |
APS (mol%) | B | 1 | 2 | ||
CNF (% w w−1) | C | 1 | 2 | 0 |
Code | Treatment | Factors | ||
---|---|---|---|---|
A MBA (mol%) | B APS (mol%) | C CNF (% w w−1) | ||
Hy01 | 1 | 4 | 1 | 1 |
Hy02 | c | 4 | 1 | 2 |
Hy03 | 0 | 4 | 1 | 0 |
Hy04 | 4 | 4 | 2 | 1 |
Hy05 | 5 | 4 | 2 | 2 |
Hy06 | 6 | 4 | 2 | 0 |
Hy07 | 7 | 8 | 1 | 1 |
Hy08 | 8 | 8 | 1 | 2 |
Hy09 | 9 | 8 | 1 | 0 |
Hy10 | 10 | 8 | 2 | 1 |
Hy11 | 11 | 8 | 2 | 2 |
Hy12 | 12 | 8 | 2 | 0 |
Code | Treatment | %Y | %WA | |
---|---|---|---|---|
Hy01 | 1 | 30.8 | 3119.0 | 7.28 × 10−4 |
Hy02 | c | 17.3 | 1818.0 | 1.47 × 10−4 |
Hy03 | 0 | 96.4 | 9567.7 | 5.23 × 10−5 |
Hy04 | 4 | 29.8 | 4631.0 | 2.73 × 10−3 |
Hy05 | 5 | 17.8 | 918.3 | 1.84 × 10−3 |
Hy06 | 6 | 101.4 | 826.0 | 4.79 × 10−4 |
Hy07 | 7 | 28.5 | 1318.4 | 5.58 × 10−4 |
Hy08 | 8 | 18.2 | 889.5 | 2.05 × 10−5 |
Hy09 | 9 | 101.1 | 2032.0 | 7.75 × 10−4 |
Hy10 | 10 | 30.6 | 5004.0 | 8.55 × 10−4 |
Hy11 | 11 | 19.0 | 882.2 | 4.06 × 10−4 |
Hy12 | 12 | 97.8 | 890.9 | 4.73 × 10−4 |
Hydrogel | K1 (min−1) | R2 Pseudo-First Order | K2 (g mg−1 min−1) | R2 Pseudo-Second Order |
---|---|---|---|---|
Hy01 | 0.0083 | 0.9595 | 0.0004111 | 0.9733 |
Adsorbent | Qmax (mg g−1) | Ref. |
---|---|---|
Ppy@magnetic chitosan | 95 | [60] |
three-dimensional (3D) porous scaffolds made of N-acyl thiolated chitosan using 11-mercaptoundecanoic acid | 434.89 | [19] |
particles of methacrylateethyltrimethylammonium chloride (DMC) and acrylamide (AM) copolymer hydrogel | 992.63 | [20] |
Chitosan/diatomite composite | 35 | [61] |
Banana peel | 21 | [62] |
Chitosan/organic rectorite-Fe3O4 | 5.6 | [53] |
Poly([2-(acryloyloxy)ethyl] trimethylammonium chloride), poly(ClAETA), hydrogels containing fibrillated nanocellulose (CNF). | 1379.0 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roa, K.; Tapiero, Y.; Thotiyl, M.O.; Sánchez, J. Hydrogels Based on Poly([2-(acryloxy)ethyl] Trimethylammonium Chloride) and Nanocellulose Applied to Remove Methyl Orange Dye from Water. Polymers 2021, 13, 2265. https://doi.org/10.3390/polym13142265
Roa K, Tapiero Y, Thotiyl MO, Sánchez J. Hydrogels Based on Poly([2-(acryloxy)ethyl] Trimethylammonium Chloride) and Nanocellulose Applied to Remove Methyl Orange Dye from Water. Polymers. 2021; 13(14):2265. https://doi.org/10.3390/polym13142265
Chicago/Turabian StyleRoa, Karina, Yesid Tapiero, Musthafa Ottakam Thotiyl, and Julio Sánchez. 2021. "Hydrogels Based on Poly([2-(acryloxy)ethyl] Trimethylammonium Chloride) and Nanocellulose Applied to Remove Methyl Orange Dye from Water" Polymers 13, no. 14: 2265. https://doi.org/10.3390/polym13142265
APA StyleRoa, K., Tapiero, Y., Thotiyl, M. O., & Sánchez, J. (2021). Hydrogels Based on Poly([2-(acryloxy)ethyl] Trimethylammonium Chloride) and Nanocellulose Applied to Remove Methyl Orange Dye from Water. Polymers, 13(14), 2265. https://doi.org/10.3390/polym13142265