Impacts of Modified Graphite Oxide on Crystallization, Thermal and Mechanical Properties of Polybutylene Terephthalate
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Sample Preparation
2.2.1. Surface Modification of GO
2.2.2. Preparation of PBT/GO Composites
2.3. Characterization of Graphene Oxide
2.3.1. Transmission Electron Microscope (TEM)
2.3.2. Fourier Transform Infrared Spectra (FT-IR)
2.3.3. Raman Spectrum
2.3.4. X-ray Photoelectron Spectroscopy (XPS)
2.3.5. Thermogravimetric Analysis (TGA)
2.4. Characterization of PBT/GO Composites
2.4.1. Differential Scanning Calorimetry (DSC)
2.4.2. Wide Angle X-ray Diffraction (WAXD)
2.4.3. Tensile Performance
2.4.4. TGA Measurement
2.4.5. Scanning Electron Microscope (SEM) Observation
3. Results and Discussions
3.1. Characterization of the Modified Graphene Oxide
3.1.1. XPS Analysis
3.1.2. FT-IR, Raman and TGA Analysis
3.1.3. TEM Observation
3.2. Crystallization Behavior of PBT/GO Composites
3.2.1. DSC Measurement
3.2.2. WAXD Measurement
3.3. Thermal Performance of PBT/GO Composites
3.4. Mechanical Properties of PBT/GO Composites
3.5. Morphology Investigation (SEM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chow, S. Process–structure–property relationships in poly(butylene terephthalate) nanocomposites. In Manufacturing of Nanocomposites with Engineering Plastics; Elsevier: Amsterdam, The Netherlands, 2015; pp. 225–254. [Google Scholar]
- Wu, S.; Liao, T. Preparation and characterization of functionalized graphite/poly(butylene terephthalate) composites. Polym. Bull. 2015, 72, 1799–1816. [Google Scholar] [CrossRef]
- Zhu, E.; Wang, L.; Chen, H.; Yang, W.; Yuen, C.; Chen, B.; Luo, C.; Bi, M.; Hu, Z.; Zhang, J.; et al. Comparative Studies on Thermal, Mechanical, and Flame Retardant Properties of PBT Nanocomposites via Different Oxidation State Phosphorus-Containing Agents Modified Amino-CNTs. Nanomaterials 2018, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Javidparvar, A.; Naderi, R.; Ramezanzadeh, B.; Bahlakeh, G. Graphene oxide as a pH-sensitive carrier for targeted delivery of eco-friendly corrosion inhibitors in chloride solution: Experimental and theroretical investigations. J. Ind. Eng. Chem. 2019, 72, 196–213. [Google Scholar] [CrossRef]
- Javidparvar, A.; Naderi, R.; Ramezanzadeh, B. Epoxy-polyamide nanocomposite coating with graphene oxide as cerium nanocontainer generating effective dual active/barrier corrosion protection. Compos. Part B Eng. 2019, 172, 363–375. [Google Scholar] [CrossRef]
- Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 2020, 10, 15328–15345. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, R.; Chen, J.; Kang, J.; Xiang, M.; Li, Y.; Li, L.; Sheng, X. Ordered structure effects on β-nucleated isotactic polypropylene/graphene oxide composites with different thermal histories. RSC Adv. 2019, 9, 19630–19640. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zeng, F.; Chen, J.; Kang, J.; Yang, F.; Cao, Y.; Xiang, M. Effects of ordered structure on non-isothermal crystallization kinetics and subsequent melting behavior of β-nucleated isotactic polypropylene/graphene oxide composites. J. Therm. Anal. Calorim. 2019, 136, 1667–1678. [Google Scholar] [CrossRef]
- Xu, X.; Yi, D.; Wang, Z.; Yu, J.; Zhang, Z.; Qiao, R.; Sun, Z.; Hu, Z.; Gao, P.; Peng, H.; et al. Greatly Enhanced Anticorrosion of Cu by Commensurate Graphene Coating. Adv. Mater. 2018, 30, 1702944. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, Q.; Zhang, X.; Jia, H.; Ji, Q.; Xu, Z. Impact of various oxidation degrees of graphene oxide on the performance of styrene–butadiene rubber nanocomposites. Polym. Eng. Sci. 2018, 58, 1409–1418. [Google Scholar] [CrossRef]
- Yu, Y.; Zeng, F.; Chen, J.; Kang, J.; Yang, F.; Cao, Y.; Xiang, M. Isothermal Crystallization Kinetics and Subsequent Melting Behavior of β-Nucleated Isotactic Polypropylene/Graphene Oxide Composites with Different Ordered Structure. Polym. Int. 2018, 67, 1212–1220. [Google Scholar] [CrossRef]
- Yu, Y.; Zeng, F.; Chen, J.; Kang, J.; Yang, F.; Cao, Y.; Xiang, M. Regulating polycrystalline behavior of the β-nucleated isotactic polypropylene/graphene oxide composites by melt memory effect. Polym. Compos. 2019, 40, E440–E448. [Google Scholar] [CrossRef]
- Fathizadeh, M.; Xu, L.; Zhou, F.; Yoon, Y.; Yu, M. Graphene Oxide: A Novel 2-Dimensional Material in Membrane Separation for Water Purification. Adv. Mater. Interfaces 2017, 4, 1600918. [Google Scholar] [CrossRef]
- Chen, C.; Qiu, S.; Cui, M.; Qin, S.; Yan, G.; Zhao, H.; Wang, L.; Xue, Q. Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 2017, 114, 356–366. [Google Scholar] [CrossRef]
- Zhu, J.; Tian, M.; Hou, J.; Wang, J.; Lin, J.; Zhang, Y.; Liu, J.; Van der Bruggen, B. Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane. J. Mater. Chem. A 2016, 4, 1980–1990. [Google Scholar] [CrossRef]
- Ahmad, H.; Fan, M.; Hui, D. Graphene oxide incorporated functional materials: A review. Compos. Part B Eng. 2018, 145, 270–280. [Google Scholar] [CrossRef]
- Adetayo, A.; Runsewe, D. Synthesis and Fabrication of Graphene and Graphene Oxide: A Review. Open J. Compos. Mater. 2019, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- Duh, S.; Ho, C.; Chen, R.; Kao, S. Study on Exothermic Oxidation of Acrylonitrile-butadiene-styrene (ABS) Resin Powder with Application to ABS Processing Safety. Polymers 2010, 2, 174–187. [Google Scholar] [CrossRef] [Green Version]
- Dorigato, A.; Pegoretti, A. Novel electroactive polyamide 12 based nanocomposites filled with reduced graphene oxide. Polym. Eng. Sci. 2019, 59, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Liu, P.; Zhao, X.; Xu, J. Enhanced tensile strength and initial modulus of poly(vinyl alcohol)/graphene oxide composite fibers via blending poly(vinyl alcohol) with poly(vinyl alcohol)-grafted graphene oxide. J. Polym. Res. 2018, 25, 65. [Google Scholar] [CrossRef]
- Parhizkar, N.; Ramezanzadeh, B.; Shahrabi, T. The epoxy coating interfacial adhesion and corrosion protection properties enhancement through deposition of cerium oxide nanofilm modified by graphene oxide. J. Ind. Eng. Chem. 2018, 64, 402–419. [Google Scholar] [CrossRef]
- Ahmadian-Alam, L.; Teymoori, M.; Mahdavi, H. Graphene oxide-anchored reactive sulfonated copolymer via simple one pot condensation polymerization: Proton-conducting solid electrolytes. J. Polym. Res. 2017, 25, 13. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, C.; Avilés, D.; Pamies, R.; Carrión-Vilches, J.; Sanes, J.; Bermúdez, D. Extruded PLA Nanocomposites Modified by Graphene Oxide and Ionic Liquid. Polymers 2021, 13, 655. [Google Scholar] [CrossRef]
- Bian, J.; Lin, H.L.; He, X.; Wang, L.; Wei, W.; Chang, T.; Sancaktar, E. Processing and assessment of high-performance poly (butylene terephthalate) nanocomposites reinforced with microwave exfoliated graphite oxide nanosheets. Eur. Polym. J. 2013, 49, 1406–1423. [Google Scholar] [CrossRef]
- Qian, P.; Zhang, Y.; Mao, H.; Wang, H.; Shi, H. Nucleation and mechanical enhancements in poly(butylene terephthalate) nanocomposites influenced by functionalized graphene oxide. SN Appl. Sci. 2019, 1, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bao, R.-Y.; Cao, J.; Liu, Z.-Y.; Yang, W.; Xie, H.; Yang, B. Towards balanced strength and toughness improvement of isotactic polypropylene nanocomposites by surface functionalized graphene oxide. J. Mater. Chem. A 2014, 2, 3190–3199. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Z.; Wang, S.; Zhang, Y. Preparation and properties of octadecylamine modified graphene oxide/styrene-butadiene rubber composites through an improved melt compounding method. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Liu, X.; Kuang, W.; Guo, B. Preparation of rubber/graphene oxide composites with in-situ interfacial design. Polymer 2015, 56, 553–562. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, W.; Song, X.; Kang, J.; Cao, Y.; Xiang, M. Effects of Hyperbranched Polyester-Modified Carbon Nanotubes on the Crystallization Kinetics of Polylactic Acid. ACS Omega 2021, 6, 10362–10370. [Google Scholar] [CrossRef]
- Liu, T.; Chen, D.; Cao, Y.; Yang, F.; Chen, J.; Kang, J.; Xu, R.; Xiang, M. Construction of a composite microporous polyethylene membrane with enhanced fouling resistance for water treatment. J. Membr. Sci. 2021, 618, 118679. [Google Scholar] [CrossRef]
- Zeng, F.; Chen, J.; Yang, F.; Kang, J.; Cao, Y.; Xiang, M. Effects of Polypropylene Orientation on Mechanical and Heat Seal Properties of Polymer-Aluminum-Polymer Composite Films for Pouch Lithium-Ion Batteries. Materials 2018, 11, 144. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Chen, D.; Xiong, B.; Zheng, N.; Yang, F.; Xiang, M.; Zheng, Z. A facile route for the fabrication of polypropylene separators for lithium ion batteries with high elongation and strong puncture resistance. Ind. Eng. Chem. Res. 2019, 58, 23135–23142. [Google Scholar] [CrossRef]
- Xu, R.; Wang, J.; Chen, D.; Liu, T.; Zheng, Z.; Yang, F.; Chen, J.; Kang, J.; Cao, Y.; Xiang, M. Preparation and performance of a charge-mosaic nanofiltration membrane with novel salt concentration sensitivity for the separation of salts and dyes. J. Membr. Sci. 2020, 595, 117472. [Google Scholar] [CrossRef]
- Wang, J.; Xu, R.; Yang, F.; Kang, J.; Cao, Y.; Xiang, M. Probing influences of support layer on the morphology of polyamide selective layer of thin film composite membrane. J. Membr. Sci. 2018, 556, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Wang, J.; Chen, D.; Yang, F.; Kang, J.; Xiang, M.; Li, L.; Sheng, X. Preparation of pH-responsive asymmetric polysulfone ultrafiltration membranes with enhanced anti-fouling properties and performance by incorporating poly(2-ethyl-2-oxazoline) additive. RSC Adv. 2018, 8, 41270–41279. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Xu, G.; Wang, J.; Chen, J.; Yang, F.; Kang, J.; Xiang, M. Influence of l-lysine on the permeation and antifouling performance of polyamide thin film composite reverse osmosis membranes. RSC Adv. 2018, 8, 25236–25247. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Xiong, B.; Zeng, F.; Xu, R.; Yang, F.; Kang, J.; Xiang, M.; Li, L.; Sheng, X.; Hao, Z. Influences of compression on the mechanical behavior and electrochemical performances of separators for lithium ion batteries. Ind. Eng. Chem. Res. 2018. [Google Scholar] [CrossRef]
- Xiong, B.; Chen, R.; Zeng, F.; Kang, J.; Men, Y. Thermal shrinkage and microscopic shutdown mechanism of polypropylene separator for lithium-ion battery: In-situ ultra-small angle X-ray scattering study. J. Membr. Sci. 2018, 545, 213–220. [Google Scholar] [CrossRef]
- Fiorio, R.; D’Hooge, D.R.; Ragaert, K.; Cardon, L. A Statistical Analysis on the Effect of Antioxidants on the Thermal-Oxidative Stability of Commercial Mass- and Emulsion-Polymerized ABS. Polymers 2018, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Balart, R.; Garcia-Sanoguera, D.; Quiles-Carrillo, L.; Montanes, N.; Torres-Giner, S. Kinetic Analysis of the Thermal Degradation of Recycled Acrylonitrile-Butadiene-Styrene by non-Isothermal Thermogravimetry. Polymers 2019, 11, 281. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, M.; Lan, M.; Li, Z.; Lu, S.; Wu, G. GM-Improved Antiaging Effect of Acrylonitrile Butadiene Styrene in Different Thermal Environments. Polymers 2019, 12, 46. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Weng, G.; Chen, Z.; Chen, J.; Cao, Y.; Yang, F.; Xiang, M. New understanding in the influence of melt structure and β-nucleating agents on the polymorphic behavior of isotactic polypropylene. RSC Adv. 2014, 56, 29514–29526. [Google Scholar] [CrossRef]
- Xiong, B.; Kang, J.; Chen, R.; Men, Y. Initiation of cavitation upon drawing of pre-oriented polypropylene film: In situ SAXS and WAXD studies. Polymer 2017, 128, 57–64. [Google Scholar] [CrossRef]
- Kang, J.; Yang, F.; Chen, J.; Cao, Y.; Xiang, M. Influences of molecular weight on the non-isothermal crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. Polym. Bull. 2017, 74, 1461–1482. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, H.; Kang, J.; Cao, Y.; Xiang, M. Effects of melt structure on non-isothermal crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. Polym. Eng. Sci. 2017, 57, 989–997. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Liu, Q.; Du, S.; Guo, Y.; Zheng, N.; Wang, F. Conditional Uncorrelation and Efficient Subset Selection in Sparse Regression. In IEEE Transactions on Cybernetics; IEEE: Piscataway, NJ, USA, 2021; pp. 1–10. [Google Scholar]
- Kang, J.; Li, X.; Xiong, B.; Liu, D.; Chen, J.; Yang, F.; Cao, Y.; Xiang, M. Investigation on the Tensile Behavior and Morphology Evolution of Isotactic Polypropylene Films Polymerized with Different Ziegler–Natta Catalysts. Adv. Polym. Technol. 2017, 46, 44–57. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Z.; Kang, J.; Yang, F.; Chen, J.; Cao, Y.; Xiang, M. Influence of melt structure on the crystallization behavior and polymorphic composition of polypropylene random copolymer. Thermochim. Acta 2015, 604, 67–76. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Z.; Wang, B.; Chen, J.; Yang, F.; Kang, J.; Cao, Y.; Xiang, M.; Li, H. Effects of melt structure on crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. J. Appl. Polym. Sci. 2015, 132, 41355. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, N.; Chen, B.; Chen, P.; Chen, S.; Liu, Z.; Wang, F.; Xi, B. Multivariate Correlation Entropy and Law Discovery in Large Data Sets. IEEE Intell. Syst. 2018, 33, 47–54. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.; Zeng, T.; Duan, N.; Wang, Z.; Wang, L.; Wang, H.; Xu, C.; Kang, J. Effects of ultrasound on the conformational and crystallization behavior of isotactic polypropylene polymerized with different Ziegler—Natta catalyst. Polym. Sci. Ser. A 2015, 57, 565–572. [Google Scholar] [CrossRef]
- Chen, Z.; Kang, W.; Kang, J.; Chen, J.; Yang, F.; Cao, Y.; Xiang, M. Non-isothermal crystallization behavior and melting behavior of Ziegler–Natta isotactic polypropylene with different stereo-defect distribution nucleated with bi-component β-nucleation agent. Polym. Bull. 2015, 72, 3283–3303. [Google Scholar] [CrossRef]
- Kang, J.; Weng, G.; Chen, J.; Yang, F.; Cao, Y.; Xiang, M. Influences of pre-ordered melt structures on the crystallization behavior and polymorphic composition of β-nucleated isotactic polypropylene with different stereo-defect distribution. J. Appl. Polym. Sci. 2015, 132, 42632. [Google Scholar] [CrossRef]
- Kang, J.; Chen, Z.; Yang, F.; Chen, J.; Cao, Y.; Weng, G.; Xiang, M. Understanding the effects of nucleating agent concentration on the polymorphic behavior of β-nucleated isotactic polypropylene with different melt structures. Colloid Polym. Sci. 2015, 293, 2061–2073. [Google Scholar] [CrossRef]
- Peng, H.; Wang, B.; Gai, J.; Chen, J.; Yang, F.; Cao, Y.; Li, H.; Kang, J.; Xiang, M. Investigation on the morphology and tensile behavior of β-nucleated isotactic polypropylene with different stereo-defect distribution. J. Appl. Polym. Sci. 2014, 131, 40027. [Google Scholar] [CrossRef]
- Peng, H.; Wang, B.; Gai, J.; Chen, J.; Yang, F.; Cao, Y.; Li, H.; Kang, J.; Xiang, M. Morphology and mechanical behavior of isotactic polypropylene with different stereo-defect distribution in injection molding. Polym. Adv. Technol. 2014, 25, 1464–1470. [Google Scholar] [CrossRef]
- Kang, J.; Chen, Z.; Chen, J.; Yang, F.; Weng, G.; Cao, Y.; Xiang, M. Crystallization and melting behaviors of the ß-nucleated isotactic polypropylene with different melt structures—The role of molecular weight. Thermochim. Acta 2015, 599, 42–51. [Google Scholar] [CrossRef]
- Kang, J.; Chen, J.; Cao, Y.; Li, H. Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and β-isotactic polypropylene. Polymer 2010, 51, 249–256. [Google Scholar] [CrossRef]
- Kang, J.; Xiong, B.; Liu, D.; Cao, Y.; Chen, J.; Yang, F.; Xiang, M. Understanding in the morphology and tensile behavior of isotactic polypropylene cast films with different stereo-defect distribution. J. Polym. Res. 2014, 21, 1–10. [Google Scholar] [CrossRef]
Samples | Crystallization | Subsequent Melting | |||||
---|---|---|---|---|---|---|---|
Tconset (°C) | Tcp (°C) | Tcendset (°C) | Wcp * (°C) | Tm1 (°C) | Tm2 (°C) | Xc (%) | |
PBT | 196.7 | 187.9 | 180.3 | 16.4 | 223.1 | 214.5 | 36.1 |
PBT/GO | 198.1 | 193.0 | 187.5 | 10.6 | 223.8 | 215.4 | 38.1 |
PBT/GO-ODA | 201.4 | 197.5 | 192.6 | 8.8 | 224.8 | / | 40.8 |
Samples | Lhkl (Å) | ||||
---|---|---|---|---|---|
(011) | (010) | (110) | (100) | (111) | |
PBT | 82 | 228 | 48 | 109 | 107 |
PBT/GO | 74 | 195 | 37 | 99 | 95 |
PBT/GO-ODA | 66 | 155 | 29 | 91 | 85 |
Samples | T1% (°C) | T5% (°C) | T10% (°C) | T30% (°C) | Tmax% (°C) |
---|---|---|---|---|---|
PBT | 342.1 | 363.7 | 372.3 | 388.0 | 422.2 |
PBT/GO | 348.0 | 375.4 | 388.1 | 408.4 | 436.7 |
PBT/GO-ODA | 372.9 | 387.7 | 395.7 | 411.3 | 441.8 |
Samples | Tensile Strength (MPa) | Elongation at Break (%) | Izod Impact Strength (kJ/m2) |
---|---|---|---|
PBT | 45.5 ± 2.4 | 136.5 ± 3.5 | 7.8 ± 0.8 |
PBT/GO | 53.6 ± 4.8 | 45.1 ± 5.2 | 4.0 ± 1.2 |
PBT/GO-ODA | 63.1 ± 2.2 | 81.3 ± 4.4 | 6.9 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wei, Z. Impacts of Modified Graphite Oxide on Crystallization, Thermal and Mechanical Properties of Polybutylene Terephthalate. Polymers 2021, 13, 2431. https://doi.org/10.3390/polym13152431
Li H, Wei Z. Impacts of Modified Graphite Oxide on Crystallization, Thermal and Mechanical Properties of Polybutylene Terephthalate. Polymers. 2021; 13(15):2431. https://doi.org/10.3390/polym13152431
Chicago/Turabian StyleLi, Hongyan, and Zhijun Wei. 2021. "Impacts of Modified Graphite Oxide on Crystallization, Thermal and Mechanical Properties of Polybutylene Terephthalate" Polymers 13, no. 15: 2431. https://doi.org/10.3390/polym13152431
APA StyleLi, H., & Wei, Z. (2021). Impacts of Modified Graphite Oxide on Crystallization, Thermal and Mechanical Properties of Polybutylene Terephthalate. Polymers, 13(15), 2431. https://doi.org/10.3390/polym13152431