Preparation and Properties of Self-Healing Waterborne Polyurethane Based on Dynamic Disulfide Bond
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of WPU-SS Emulsion
2.3. Preparation of WPU Films
2.4. Measurement of Isocyanate Content by Dibutyl-Amine Method
- (1)
- Reagent preparation:
- Preparation of 0.1 mol/L hydrochloric acid standard solution and calibration with anhydrous sodium carbonate.
- Configure 0.1-mol/L di-n-butylamine-acetone solution: 12.9-g di-n-butylamine was placed in a 1000-mL volumetric flask, diluted with acetone and shaken.
- Bromocresol green indicator: 0.1-g bromocresol green was dissolved in 100-mL volumetric flasks with a 1.5-mL concentration of 0.1-mol/L sodium hydroxide solution and diluted with distilled water to scale.
- (2)
- Operation process: Accurate weighing 1~3-g prepolymer to 150-mL conical flask, adding 20-mL dibutyl-amine-acetone solution, fully reaction 20 min after adding 5 drops of bromocresol green indicator. Use the configured 0.1-mol/L hydrochloric acid standard solution to titrate the prepolymer. When the color changes from blue to yellow, it will be the end of the reaction. Read the volume and do a blank control experiment.
- (3)
- Isocyanate content was determined by using the following Equation (1):
2.5. Characterization
2.5.1. Determination of Dispersion Stability
2.5.2. Fourier-Transform Infrared Spectroscopy (FTIR)
2.5.3. Dynamic Thermomechanical Analysis (DMA)
2.5.4. Thermogravimetric Analysis (TGA)
2.5.5. X-ray Photoelectron Spectroscopy (XPS)
2.5.6. Determination of Self-Healing Performance
3. Results and Discussion
3.1. Dispersion and Stability Analysis
3.2. Structure Analysis
3.3. Dynamic Thermodynamic Analysis
3.4. Thermal Stability Analysis
3.5. Tensile Properties and Self-Healing Efficiency of WPU-SS Films
3.6. Reprocessing Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ur Rehman, H.; Chen, Y.; Hedenqvist, M.S.; Li, H.; Xue, W.; Guo, Y.; Guo, Y.; Duan, H.; Liu, H. Self-Healing Shape Memory PUPCL Copolymer with High Cycle Life. Adv. Funct. Mater. 2018, 28, 1704109. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Q.; Lv, X.; Gao, L.; Fang, S.; Yu, H. Photoinduced triple shape memory polyurethane enabled by doping with azobenzene and GO. J. Mater. Chem. C 2016, 4, 9993–9997. [Google Scholar] [CrossRef]
- Heo, Y.; Sodano, H.A. Self-Healing Polyurethanes with Shape Recovery. Adv. Funct. Mater. 2014, 24, 5261–5268. [Google Scholar] [CrossRef]
- Kim, J.; Hong, P.H.; Choi, K.; Moon, G.; Kang, J.; Lee, S.; Lee, S.; Jung, H.W.; Ko, M.J.; Hong, S.W. A Heterocyclic Polyurethane with Enhanced Self-Healing Efficiency and Outstanding Recovery of Mechanical Properties. Polymers 2020, 12, 968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Lu, X.; Wang, W. A tough polyurethane elastomer with self-healing ability. Mater. Des. 2017, 127, 30–36. [Google Scholar] [CrossRef]
- Hillewaere, X.K.D.; Du Prez, F.E. Fifteen chemistries for autonomous external self-healing polymers and composites. Prog. Polym. Sci. 2015, 49–50, 121–153. [Google Scholar] [CrossRef]
- Campanella, A.; Dohler, D.; Binder, W.H. Self-Healing in Supramolecular Polymers. Macromol. Rapid Commun. 2018, 39, 1700739. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.F.; Rong, M.Z.; Zhang, M.Q.; Chen, X.D. Dynamic reversible bonds enable external stress-free two-way shape memory effect of a polymer network and the interrelated intrinsic self-healability of wider crack and recyclability. J. Mater. Chem. A 2018, 6, 16053–16063. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, M.; Zhao, X. Rapid degradation of disulfide-based thermosets through thiol-disulfide exchange reaction. Polymers 2017, 120, 1–8. [Google Scholar] [CrossRef]
- Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977–980. [Google Scholar] [CrossRef]
- de Luzuriaga, A.R.; Martin, R.; Markaide, N.; Rekondo, A.; Cabañero, G.; Rodríguez, J.; Odriozola, I. Correction: Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz. 2020, 7, 2460–2461. [Google Scholar] [CrossRef]
- Sarma, R.J.; Otto, S.; Nitschke, J.R. Disulfides, imines, and metal coordination within a single system: Interplay between three dynamic equilibria. Chemistry 2007, 13, 9542–9546. [Google Scholar] [CrossRef] [PubMed]
- Rekondo, A.; Martin, R.; de Luzuriaga, A.R.; Cabañero, G.; Grande, H.J.; Odriozola, I. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 2014, 1, 237–240. [Google Scholar] [CrossRef]
- Kim, S.M.; Jeon, H.; Shin, S.H.; Park, S.A.; Jegal, J.; Hwang, S.Y.; Oh, D.X.; Park, J. Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers. Adv. Mater. 2018, 30, 1705145. [Google Scholar] [CrossRef]
- Xu, W.M.; Rong, M.Z.; Zhang, M.Q. Sunlight driven self-healing, reshaping and recycling of a robust, transparent and yellowing-resistant polymer. J. Mater. Chem. A 2016, 4, 10683–10690. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, Y.; Fan, M.; Jiang, P.; Dong, Y. Modified cellulose nanocrystals enhancement to mechanical properties and water resistance of vegetable oil-based waterborne polyurethane. J. Appl. Polym. Sci. 2019, 136, 48228. [Google Scholar] [CrossRef]
- Kim, M.S.; Ryu, K.M.; Lee, S.H.; Choi, Y.C.; Rho, S.; Jeong, Y.G. Chitin Nanofiber-Reinforced Waterborne Polyurethane Nanocomposite Films with Enhanced Thermal and Mechanical Performance. Carbohydr. Polym. 2021, 258, 117728. [Google Scholar] [CrossRef] [PubMed]
- Hadjadj, A.; Jbara, O.; Tara, A.; Gilliot, M.; Malek, F.; Maafi, E.M.; Tighzert, L. Effects of cellulose fiber content on physical properties of polyurethane based composites. Compos. Struct. 2016, 135, 217–223. [Google Scholar] [CrossRef]
- Lin, C.K.; Kuo, J.F.; Chen, C.Y.; Fang, J.J. Investigation of bifurcated hydrogen bonds within the thermotropic liquid crystalline polyurethanes. Polymers 2012, 53, 254–258. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, W.; Gong, X.; Sun, Q.; Cao, X.; Su, Y.; Yu, B.; Li, R.K.; Vellaisamy, R.A. Surface decoration of halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites. J. Mater. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, S.Q.; Hu, G.H.; Zhang, Q.C.; Liu, Y.; Huang, C.X.; Li, W.; Jiang, T.; Wang, S.F. Synthesis and characterization of waterborne polyurethane/polyhedral oligomeric silsesquioxane composites with low dielectric constants. Polym. Adv. Technol. 2019, 30, 2313–2320. [Google Scholar] [CrossRef]
- Lu, W.C.; Chuang, F.S.; Venkatesan, M.; Cho, C.J.; Chen, P.Y.; Tzeng, Y.R.; Yu, Y.Y.; Rwei, S.P.; Kuo, C.C. Synthesis of Water Resistance and Moisture-Permeable Nanofiber Using Sodium Alginate-Functionalized Waterborne Polyurethane. Polymers 2020, 12, 2882. [Google Scholar] [CrossRef] [PubMed]
- Gubanska, I.; Kucinska-Lipka, J.; Janik, H. The influence of amorphous macrodiol, diisocyanate type and l-ascorbic acid modifier on chemical structure, morphology and degradation behavior of polyurethanes for tissue scaffolds fabrication. Polym. Degrad. Stab. 2019, 163, 52–67. [Google Scholar] [CrossRef]
- Gao, Z.; Peng, J.; Zhong, T.; Sun, J.; Wang, X.; Yue, C. Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydr. Polym. 2012, 87, 2068–2075. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, S.Q.; Li, Q.; Khan, M.R.; Liu, Y.; Lu, P.; Huang, C.X.; Huang, L.J.; Jiang, T. Fabrication and properties of waterborne thermoplastic polyurethane nanocomposite enhanced by the POSS with low dielectric constants. Polymers 2020, 209, 122992. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, S.; Wu, Y.; Guan, T.; Sun, N.; Ren, B. Self-healing UV light-curable resins containing disulfide group: Synthesis and application in UV coatings. Prog. Org. Coat. 2019, 133, 289–298. [Google Scholar] [CrossRef]
- Zhao, H.; Hao, T.H.; Hu, G.H.; Shi, D.; Huang, D.; Jiang, T.; Zhang, Q.C. Preparation and Characterization of Polyurethanes with Cross-Linked Siloxane in the Side Chain by Sol-Gel Reactions. Materials 2017, 10, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Huang, D.; Hao, T.H.; Hu, G.H.; Ye, G.B.; Jiang, T.; Zhang, Q.C. Synthesis and Investigation of Well-Defined Silane Terminated and Segmented Waterborne Hybrid Polyurethanes. New J. Chem. 2017, 41, 9268–9275. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Webster, D.C. Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 2009, 34, 1068–1133. [Google Scholar] [CrossRef]
- Floros, M.; Hojabri, L.; Abraham, E.; Jose, J.; Thomas, S.; Pothan, L.; Leao, A.L.; Narine, S. Enhancement of thermal stability, strength and extensibility of lipid-based polyurethanes with cellulose-based nanofibers. Polym. Degrad. Stab. 2012, 97, 1970–1978. [Google Scholar] [CrossRef]
- Fu, H.; Wang, Y.; Li, X.; Chen, W. Synthesis of vegetable oil-based waterborne polyurethane/silver-halloysite antibacterial nanocomposites. Compos. Sci. Technol. 2016, 126, 86–93. [Google Scholar] [CrossRef]
- Liu, N.; Zhao, Y.; Kang, M.; Wang, J.; Wang, X.; Feng, Y.; Yin, N.; Li, Q. The effects of the molecular weight and structure of polycarbonatediols on the properties of waterborne polyurethanes. Prog. Org. Coat. 2015, 82, 46–56. [Google Scholar] [CrossRef]
- Trovati, G.; Sanches, E.A.; Neto, S.C.; Mascarenhas, Y.P.; Chierice, G.O. Characterization of polyurethane resins by FTIR, TGA, and XRD. J. Appl. Polym. Sci. 2010, 115, 263–268. [Google Scholar] [CrossRef]
- Zhao, H.; She, W.; Shi, D.; Wu, W.; Zhang, Q.C.; Li, R.K. Polyurethane/POSS nanocomposites for superior hydrophobicity and high ductility. Compos. Part B Eng. 2019, 177, 107441. [Google Scholar] [CrossRef]
- Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. Colorless, Transparent, Robust, and Fast Scratch-Self-Healing Elastomers via a Phase-Locked Dynamic Bonds Design. Adv. Mater. 2018, 30, 1802556. [Google Scholar] [CrossRef] [PubMed]
HDI | PTMG | DMPA | HEDS | TEA | |
---|---|---|---|---|---|
WPU1 | 3.5 | 0.55 | 0.85 | 1.10 | 0.85 |
WPU2 | 3.5 | 0.83 | 0.85 | 0.83 | 0.85 |
WPU3 | 3.5 | 1.10 | 0.85 | 0.55 | 0.85 |
Td5% (°C) | Td10% (°C) | Td50% (°C) | |
---|---|---|---|
WPU1 | 256 | 273 | 361 |
WPU2 | 264 | 278 | 377 |
WPU3 | 270 | 290 | 382 |
Samples | Heat Treatment Time (h) | Tensile Strength (MPa) | Elongation at Break (%) | Healing Efficiency (%) |
---|---|---|---|---|
WPU1 | / | 13.75 | 820.01 | / |
2 | 3.85 | 71.67 | 28.00 | |
4 | 3.99 | 151.12 | 29.02 | |
24(25 °C) | 3.26 | 23.9 | 23.70 | |
WPU2 | / | 2.85 | 1427.78 | / |
2 | 2.43 | 1213.34 | 85.26 | |
4 | 2.74 | 1365.01 | 96.14 | |
24(25 °C) | 2.40 | 1235.01 | 84.21 | |
WPU3 | / | 1.84 | 2053.08 | / |
2 | 1.64 | 1719.64 | 89.13 | |
4 | 1.79 | 1880.01 | 97.28 | |
24(25 °C) | 1.58 | 1671.88 | 85.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, G.; Jiang, T. Preparation and Properties of Self-Healing Waterborne Polyurethane Based on Dynamic Disulfide Bond. Polymers 2021, 13, 2936. https://doi.org/10.3390/polym13172936
Ye G, Jiang T. Preparation and Properties of Self-Healing Waterborne Polyurethane Based on Dynamic Disulfide Bond. Polymers. 2021; 13(17):2936. https://doi.org/10.3390/polym13172936
Chicago/Turabian StyleYe, Gongbo, and Tao Jiang. 2021. "Preparation and Properties of Self-Healing Waterborne Polyurethane Based on Dynamic Disulfide Bond" Polymers 13, no. 17: 2936. https://doi.org/10.3390/polym13172936
APA StyleYe, G., & Jiang, T. (2021). Preparation and Properties of Self-Healing Waterborne Polyurethane Based on Dynamic Disulfide Bond. Polymers, 13(17), 2936. https://doi.org/10.3390/polym13172936