A Review on Synthesis, Properties, and Applications of Polylactic Acid/Silica Composites
Abstract
:1. Introduction
2. Synthesis of PLA/Silica Composites
3. Rheological Properties
4. Thermal Properties
5. Mechanical Properties
6. Biodegradbility and Other Properties
7. Potential Applications of PLA/Silica Composites
8. Future Outlooks of PLA/Silica Composites
- Although PLA/silica composites have been utilized in 3D-printing applications, more research would be needed in this area, as the main challenge in 3D-printing applications is enhancing the flexibility, as well as controlling the viscosity, of PLA.
- The dispersion of silica nanoparticles in the PLA matrix should be improved, as various undiscovered applications in various fields, such as the aerospace, energy, and chemical industries, are expected to be available shortly.
- The utilization of PLA/silica composites to produce hierarchically porous PLA materials for biomedical applications, such as tissue scaffolding, would be a promising research area shortly. The processing conditions, however, should be selected carefully to successfully fabricate such materials.
- Even PLA/silica composites exhibited some levels of biodegradability; they are still far from being considered a solution for plastic waste accumulation.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandra, R.; Rustgi, R. Biodegradable polymers. Prog. Polym. Sci. 1998, 23, 1273–1335. [Google Scholar] [CrossRef]
- Briassoulis, D. An overview on the mechanical behaviour of biodegradable agricultural films. J. Polym. Environ. 2004, 12, 65–81. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Ayyoob, M.; Joo, J.; Deri, F. Polylactic acid blends: The future of green, light and tough. Prog. Polym. Sci. 2018, 85, 83–127. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Yang, H.W.; Deri, F.; Ko, Y.G. Properties and medical applications of polylactic acid: A review. Express Polym. Lett. 2015, 9, 435–455. [Google Scholar] [CrossRef]
- Kaseem, M.; Hamad, K.; Deri, F.; Ko, Y.G. A review on recent researches on polylactic acid/carbon nanotube composites. Polym. Bull. 2017, 74, 2921–2937. [Google Scholar] [CrossRef]
- Kaseem, M.; Ko, Y.G. Melt flow behavior and processability of polylactic acid/polystyrene (PLA/PS) polymer blends. J. Polym. Environ. 2017, 25, 994–998. [Google Scholar] [CrossRef]
- Kaseem, M.; Hamad, K.; Rehman, Z.U. Review of recent advances in polylactic acid/TiO2 composites. Materials 2019, 12, 3659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamad, K.; Kaseem, M.; Deri, F. Preparation and characterization of binary and ternary blends with poly(lactic acid), polystyrene, and acrylonitrile-butadiene-styrene. J. Biomater. Nanobiotechnol. 2012, 3, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Kaseem, M. Poly(lactic acid) composites. Materials 2019, 12, 3586. [Google Scholar] [CrossRef] [Green Version]
- Hamad, K.; Ko, Y.G.; Kaseem, M.; Deri, F. Effect of acrylonitrile–butadiene–styrene on flow behavior and mechanical properties of polylactic acid/low density polyethylene blend. Asia-Pac. J. Chem. Eng. 2014, 9, 349–353. [Google Scholar] [CrossRef]
- Kadhum, S.A. The Effect of two types of nano-particles (ZnO and SiO2) on different types of bacterial growth. Biomed. Pharmacol. J. 2017, 10, 1701–1708. [Google Scholar] [CrossRef]
- Li, H.; Liebscher, M.; Curosu, I.; Choudhury, S.; Hempel, S.; Davoodabadi, M.; Dinh, T.T.; Yang, J.; Mechtcherine, V. Electrophoretic deposition of nano-silica onto carbon fiber surfaces for an improved bond strength with cementitious matrices. Cem. Concr. Compos. 2020, 114, 103777. [Google Scholar] [CrossRef]
- Singh, L.; Karade, S.; Bhattacharyya, S.; Yousuf, M.; Ahalawat, S. Beneficial role of nanosilica in cement based materials A review. Constr. Build. Mater. 2013, 47, 1069–1077. [Google Scholar] [CrossRef]
- Sikora, P.; Chougan, M.; Cuevas, K.; Liebscher, M.; Mechtcherine, V.; Ghaffar, S.H.; Stephan, D. The Effects of Nano-and Micro-Sized Additives on 3D Printable Cementitious and Alkali-activated Composites: A Review. Appl. Nanosci. 2021, 1–19. Available online: https://link.springer.com/article/10.1007/s13204-021-01738-2 (accessed on 16 August 2021).
- Ren, Z.; Zhou, W.; Qing, Y.; Duan, S.; Pan, H.; Zhou, Y.; Li, N. Microwave absorption and mechanical properties of SiCf/SiOC composites with SiO2 fillers. Ceram. Int. 2021, 47, 8478–8485. [Google Scholar] [CrossRef]
- Kaseem, M.; Choi, K.; Ko, Y.G. A highly compact coating responsible for enhancing corrosion properties of Al-Mg-Si alloy. Mater. Lett. 2017, 196, 316–319. [Google Scholar] [CrossRef]
- Liu, W.; Wu, X.; Zhan, H.; Yan, F. Synthesis of bioactive poly(ethylene glycol)/SiO2-CaO-P2O5 hybrids for bone regeneration. Mater. Sci. Eng. C 2012, 32, 707–711. [Google Scholar] [CrossRef]
- Jia, H.; Hou, W.; Wei, L.; Xu, B.; Liu, X. The structures and antibacterial properties of nano-SiO2 supported silver/zinc–silver materials. Dent. Mater. 2008, 24, 244–249. [Google Scholar] [CrossRef]
- Petousis, M.; Tzounis, L.; Papageorgiou, D.; Vidakis, N. Decoration of SiO2 and Fe3O4 nanoparticles onto the surface of MWCNT-grafted glass fibers: A simple approach for the creation of binary nanoparticle hierarchical and multifunctional composite interphases. Nanomaterials 2020, 10, 2500. [Google Scholar] [CrossRef]
- Fatimah, S.; Kamil, M.P.; Kwon, J.H.; Kaseem, M.; Ko, Y.G. Dual incorporation of SiO2 and ZrO2 nanoparticles into the oxide layer on 6061 Al alloy via plasma electrolytic oxidation: Coating structure and corrosion properties. J. Alloys Compd. 2017, 707, 358–364. [Google Scholar] [CrossRef]
- Tsai, P.-A.; Chiu, W.-M.; Lin, C.-E.; Wu, J.-H. Fabrication and characterization of PLA/SiO2/Al2O3 composites prepared by Sol-Gel process. Polym. Plast. Technol. Eng. 2013, 52, 1488–1495. [Google Scholar] [CrossRef]
- Kim, G.H.; Hwang, S.W.; Jung, B.N.; Kang, D.; Shim, J.K.; Seo, K.H.E. Effect of PMMA/Silica hybrid particles on interfacial adhesion and crystallization properties of Poly(Lactic Acid)/Block acrylic elastomer composites. Polymers 2020, 12, 2231. [Google Scholar] [CrossRef]
- Zehra, T.; Kaseem, M.; Hossain, S.; Ko, Y.G. Fabrication of a protective hybrid coating composed of TiO2, MoO2, and SiO2 by plasma electrolytic oxidation of titanium. Metals 2021, 8, 1182. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, K.; Wang, Y.; Han, L.; Han, C.; Zhang, H.; Chen, S.; Dong, L. Study of the thermal stabilization mechanism of biodegradable poly(L-lactide)/silica nanocomposites. Polym. Int. 2011, 60, 202–210. [Google Scholar] [CrossRef]
- Basu, A.; Nazarkovsky, M.; Ghadi, R.; Khan, W.; Domb, A.J. Poly(lactic acid)-based nanocomposites. Polym. Adv. Technol. 2017, 28, 919–930. [Google Scholar] [CrossRef]
- Hakim, R.H.; Cailloux, J.; Santana, O.O.; Bou, J.; S_anchez-Soto, M.; Odent, J.; Raquez, J.M.; Dubois, P.; Carrasco, F.; Maspoch, M.L. PLA/SiO2 composites: Influence of the filler modifications on the morphology, crystallization behavior, and mechanical properties. J. Appl. Polym. Sci. 2017, 134, 45367. [Google Scholar] [CrossRef]
- Yan, S.; Yin, J.; Yang, J.; Chen, X. Structural characteristics and thermal properties of plasticized poly(L-lactide)-silica nanocomposites synthesized by sol-gel method. Mater. Lett. 2007, 61, 2683–2686. [Google Scholar] [CrossRef]
- Dash, S.; Mishra, S.; Patel, S.; Mishra, B.K. Organically modified silica: Synthesis and applications due to its surface interaction with organic molecules. Adv. Colloid Interface Sci. 2008, 140, 77–94. [Google Scholar] [CrossRef]
- Parida, S.K.; Dash, S.; Patel, S.; Mishra, B.K. Adsorption of organic molecules on silica surface. Adv. Colloid Interface Sci. 2006, 121, 77–110. [Google Scholar] [CrossRef] [PubMed]
- Bagwe, R.P.; Hilliard, L.R.; Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006, 22, 4357–4362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mai, Y.-W.; Yu, Z.-Z. Polymer Nanocomposites; Woodhead Publishing Limited: Cambridge, UK, 2006. [Google Scholar]
- Yan, S.; Yin, J.; Yang, Y.; Dai, Z.; Ma, J.; Chen, X. Surface-grafted silica linked with L-Lactic acid oligomer: A novel nanofiller to improve the performance of biodegredable poly(L-Lactide). Polymer 2007, 48, 1688–1694. [Google Scholar] [CrossRef]
- Wu, L.; Cao, D.; Huang, Y.; Li, B.G. Poly(L-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of L-lactic acid in the presence of acidic silica sol: Preparation and characterization. Polymer 2008, 49, 742–748. [Google Scholar] [CrossRef]
- Liu, L.Z.; Ma, H.J.; Zhu, X.S. Preparation and properties of polylactide/nano-silica in situ composites. Pigment. Resin. Technol. 2010, 39, 27–31. [Google Scholar] [CrossRef]
- Chang, C.C.; Tsai, Y.L.; Chiu, J.J.; Chen, H. Preparation of phase change materials microcapsules by using PMMA network-silica hybrid shell via sol-gel process. J. Appl. Polym. Sci. 2009, 112, 1688–1694. [Google Scholar] [CrossRef]
- Fukushima, K.; Tabuani, D.; Abbate, C.; Arena, M.; Rizzarelli, P. Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica. Euro. Polym. J. 2011, 47, 139–152. [Google Scholar] [CrossRef]
- Luo, D.; Zhen, W.; Dong, C.; Zhao, L. Performance and multi-scale investigation on the phase miscibility of poly(lactic acid)/amided silica nanocomposites. Inter. J. Biol. Macromol. 2021, 177, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wu, L.; Peng, B. Poly(L-lactic acid)/silicone dioxide nanocomposites prepared via in situ melt polycondensation of L-lactic acid in the presence of acidic silica sol: Dispersion stability of nanoparticles during dehydration/oligomerization. J. Appl. Polym. Sci. 2012, 124, 3980–3987. [Google Scholar] [CrossRef]
- Wu, J.H.; Yen, M.S.; Kuo, M.C.; Chen, B.H. Physical properties and crystallization behavior of silica particulates reinforced poly(lactic acid) composites. Mater. Chem. Phys. 2013, 142, 726–733. [Google Scholar] [CrossRef]
- Ray, S.S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar]
- Zou, J.; Ma, T.; Zhang, J.; He, W.; Huang, F. Preparation and characterization of PLLA–ESO/surface-grafted silica nanocomposites. Polym. Bull. 2011, 67, 1261–1271. [Google Scholar] [CrossRef]
- Sepulveda, J.; Villegas, C.; Torres, A.; Vargas, E.; Rodriguez, F.; Baltazar, S.; Prada, A.; Rojas, A.; Romero, J.; Faba, S.; et al. Effect of functionalized silica nanoparticles on the mass transfer process in active PLA nanocomposite films obtained by supercritical impregnation for sustainable food packaging. J. Supercrit. Fluids 2020, 161, 104844. [Google Scholar] [CrossRef]
- Zhu, A.; Diao, H.; Rong, Q.; Cai, A. Preparation and properties of polylactide–silica nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2866–2873. [Google Scholar] [CrossRef]
- Kaseem, M.; Hamad, K.; Deri, F. Slit die rheology of thermoplastic starch during extrusion process. Inter. J. Polym. Mater. 2013, 17, 51–60. [Google Scholar] [CrossRef]
- Kaseem, M.; Hamad, K.; Deri, F. On-line rheological and mechanical measurement of ABS/starch composites. Inter. J. Polym. Mater. 2013, 62, 260–264. [Google Scholar] [CrossRef]
- Kaseem, M.; Hamad, K.; Park, J.H.; Ko, Y.G. Rheological properties of ABS/wood composites. Euro. J. Wood. Wood. Prod. 2015, 73, 701–703. [Google Scholar] [CrossRef]
- Kaseem, M.; Hamad, K.; Yang, H.W.; Deri, F.; Ko, Y.G. Melt rheology of poly(vinylidene fluoride) (PVDF)/low density polyethylene (LDPE) blends. Poly. Sci. Part. A 2015, 57, 233–238. [Google Scholar] [CrossRef]
- Kaseem, M.; Hamad, K.; Deri, F.; Ko, Y.G. Effect of wood fibers on the rheological and mechanical properties of polystyrene/wood composites. J. Wood. Chem. Technol. 2017, 37, 251–260. [Google Scholar] [CrossRef]
- Kaseem, M.; Hamad, K.; Deri, F. Preparation and studying properties of thermoplastic starch/acrylonitrile–butadiene–styrene blend. Int. J. Plast. Technol. 2012, 16, 39–49. [Google Scholar] [CrossRef]
- Basilissi, L.; di Silvestro, G.; Farina, H.; Ortenzi, M.A. Synthesis and characterization of PLA nanocomposites containing nanosilica modified with different organosilanes II: Effect of the organosilanes on the properties of nanocomposites: Thermal characterization. J. Appl. Polym. Sci. 2013, 128, 3057–3063. [Google Scholar] [CrossRef]
- Li, Y.; Han, C.; Bian, J.; Han, L.; Dong, L.; Gao, G. Rheology and biodegradation of polylactide/silica nanocomposites. Polym. Compos. 2012, 33, 1719–1727. [Google Scholar] [CrossRef]
- Nerantzaki, M.; Prokopiou, L.; Bikiaris, D.N.; Patsiaoura, D.; Chrissafis, K.; Klonos, P.; Kyritsis, A.; Pissis, P. In situ prepared poly(DL-lactic acid)/silica nanocomposites: Study of molecular composition, thermal stability, glass transition and molecular dynamics. Thermochim. Acta 2018, 669, 16–29. [Google Scholar] [CrossRef]
- Pandis, C.; Trujillo, S.; Matos, J.; Madeira, S.; Ródenas-Rochina, J.; Kripotou, S.; Kyritsis, A.; Mano, J.F.; Ribelles, J.L.G. Porous polylactic acid–silica hybrids: Preparation, characterization, and study of mesenchymal stem cell osteogenic differentiation. Macromol. Biosci. 2015, 15, 262. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Kaschta, J.; Schubert, D.W. Viscous and elastic properties of polylactide melts filled with silica particles: Effect of particle size and concentration. Compos. Part. B 2016, 89, 44–53. [Google Scholar] [CrossRef]
- Wen, X.; Lin, Y.; Han, C.; Zhang, K.; Ran, X.; Li, Y.; Dong, L. Thermomechanical and optical properties of biodegradable poly(L-lactide)/silica nanocomposites by melt compounding. J. Appl. Polym. Sci. 2009, 114, 3379–3388. [Google Scholar] [CrossRef]
- Zhang, J.; Lou, J.; Ilias, S.; Krishnmachari, P.; Yan, J. Thermal properties of poly(lactic acid) fumed silica nanocomposites: Experiments and molecular dynamics simulations. Polymer 2008, 49, 2381–2386. [Google Scholar] [CrossRef]
- Klonos, P.; Pissis, P. Effects of interfacial interactions and of crystallization on rigid amorphous fraction and molecular dynamics in polylactide/silica nanocomposites: A methodological approach. Polymer 2017, 112, 228–243. [Google Scholar] [CrossRef]
- Bouamer, A.; Benrekaa, N.; Younes, A. Characterization of polylactic acid ceramic composites synthesized by casting method. Mater. Today Proc. 2021, 42, 2959–2962. [Google Scholar] [CrossRef]
- Santos, F.A.D.; Tavares, M.I.B. Development and characterization of hybrid materials based on biodegradable PLA matrix, microcrystalline cellulose and organophilic silica. Polímeros 2014, 24, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Y.; Chen, K.; Li, P.; He, X.; Li, W.; Wu, Y. Effect of nano-SiO2on the compatibility interface and properties of polylactic acid-grafted-bamboofiber/polylactic acid composite. Inter. J. Biol. Macromol. 2020, 157, 177–186. [Google Scholar] [CrossRef]
- Prapruddivongs, C.; Wongpreede, M.A.T. Effect of silica resources on the biodegradation behavior of poly (lactic acid)and chemical crosslinked poly (lactic acid) composites. Polym. Test. 2018, 71, 87–94. [Google Scholar] [CrossRef]
- Prapruddivongs, C.; Rukrabiab, J.; Kulwongwit, N.; Wonpreedee, T. Effect of surface-modified silica on the thermal and mechanical behaviors of poly(lactic acid) and chemically crosslinked poly(lactic acid) composites. J. Thermoplast. Compos. Mater. 2020, 33, 1692–1706. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Velidakis, E.; Mountakis, N.; Tzounis, L.; Liebscher, M.; Grammatikos, S.A. Enhanced mechanical, thermal and antimicrobial properties of additively manufactured polylactic Acid with optimized nano silica content. Nanomaterials 2021, 11, 1012. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Song, S.; Sun, S.; Ren, L.; Zhang, H. Enhanced properties of poly(lactic acid) with silica nanoparticles. Polym. Adv. Technol. 2016, 27, 1156–1163. [Google Scholar] [CrossRef]
- Ge, H.; Zhu, Z.; Yin, H.; Zhang, X.; Wang, R. Fabrication and properties of sc-PLA/SiO2, Fabrication and Properties of sc-PLA/SiO2 Composites. IOP Conf. Ser. Mater. Sci. Eng. 2014, 62, 012031. [Google Scholar] [CrossRef] [Green Version]
- Pilic, B.M.; Radusin, T.I.; Ristic, I.S.; Silvestre, C.; Lazic, V.L.; Balos, S.S.; Duraccio, D. Hydrophobic silica nanoparticles as reinforcing filler for poly (lactic acid) polymer matrix. Hem. Ind. 2016, 70, 73–80. [Google Scholar] [CrossRef]
- Techawinyutham, L.; Siengchin, S.; Dangtungee, R.; Parameswaranpillai, J. Influence of accelerated weathering on the thermo-mechanical, antibacterial, and rheological properties of polylactic acid incorporated with porous silica-containing varying amount of capsicum oleoresin. Compos. Part. B 2019, 175, 107108. [Google Scholar] [CrossRef]
- Wu, F.; Lan, X.; Ji, D.; Liu, Z.; Yang, W.; Yang, W.; Yang, M. Grafting polymerization of polylactic acid on the surface of nano-SiO2 and properties of PLA/PLA-grafted-SiO2 nanocomposites. J. Appl. Polym. Sci. 2013, 129, 3019–3027. [Google Scholar] [CrossRef]
- Chrissafis, K.; Bikiaris, D. Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers. Thermochim. Acta 2011, 523, 1–24. [Google Scholar] [CrossRef]
- Khankrua, R.; Pivsa-Art, S.; Hiroyuki, H.; Suttiruengwong, S. Thermal and mechanical properties of biodegradable polyester/silica nanocomposites. Energy Procedia 2013, 34, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Mustapa, I.R.; Ansari, M.N.M.; Shanks, R.A. Poly(Lactic acid) Hemp composites combined with nano-silica. TechConnect Briefs 2011, 3, 7136–7138. [Google Scholar]
- Mustapa, I.R.; Shanks, R.A.; Kong, I. Poly(lactic acid)-hemp-nanosilica hybrid composites: Thermomechanical, thermal behavior and morphological properties. Inter. J. Adv. Sci. Eng. Technol. 2013, 3, 192–199. [Google Scholar]
- Mustapa, I.R.; Shanks, R.A.; Kong, I. Multiple melting behavior of poly(lactic acid)-hemp-silica composites using modulated-temperature differential scanning calorimetry. J. Polym. Eng. 2014, 34, 895–903. [Google Scholar] [CrossRef]
- Mustapa, I.R.; Shanks, R.A.; Kong, I. Melting behaviour and dynamic mechanical properties of poly(lactic acid)-hemp-nanosilica composites. Asian Trans. Basic Appl. Sci. 2013, 3, 29–37. [Google Scholar]
- Lai, S.M.; Li, P.W. Effect of thermoplastic polyurethane-modified silica on melt- blended poly(Lactic Acid) (PLA) nanocomposites. Poly Poly Compos. 2017, 25, 583–592. [Google Scholar] [CrossRef]
- He, H.; Pang, Y.; Duan, Z.; Luo, N.; Wang, Z. The Strengthening and toughening of biodegradable poly (lactic acid) using the SiO2-PBA core—Shell nanoparticle. Materials 2019, 12, 2510. [Google Scholar] [CrossRef] [Green Version]
- Lei, W.C.; Zhang, M.Q.; Rong, M.Z.; Friedrich, K. Silica nanoparticles filled polypropylene: Effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Comp. Sci. Tech. 2005, 65, 635–645. [Google Scholar]
- Ahmed, W.; Siraj, S.; Al-Marzouqi, A.H. 3D Printing PLA waste to produce ceramic based particulate reinforced composite using abundant silica-sand: Mechanical properties characterization. Polymers 2020, 12, 2579. [Google Scholar] [CrossRef]
- Régibeau, N.; Tilkin, R.G.; Grandfils, C.; Heinrichs, B. Preparation of poly-d,l-lactide based nanocomposites with polymer-grafted silica by melt blending: Study of molecular, morphological, and mechanical properties. Polym. Compos. 2021, 42, 955–972. [Google Scholar] [CrossRef]
- Georgiopoulos, P.; Kontou, E.; Meristoudi, A.; Pispas, S.; Chatzinikolaidou, M. Τhe effect of silica nanoparticles on the thermomechanical properties and degradation behavior of polylactic acid. J. Biomater. Appl. 2004, 29, 662–674. [Google Scholar] [CrossRef]
- Zirak, M.F.; Tabari, M. PLA-SiO2 nanocomposite films: Morphological and mechanical properties and specific end-use characteristics. Nanomed Res. J. 2018, 3, 140–145. [Google Scholar]
- Chrissafis, K.; Pavlidou, E.; Paraskevopoulos, K.; Beslikas, T.; Nianias, N.; Bikiaris, D. Enhancing mechanical and thermal properties of PLLA ligaments with fumed silica nanoparticles and montmorillonite. J. Therm. Anal. Calorim. 2011, 105, 313–323. [Google Scholar] [CrossRef]
- Lai, S.M.; Hsieh, T.T. Preparation and properties of polylactic acid (PLA)/silica nanocomposites. J. Macromol. Sci. Part. B 2016, 3, 211–228. [Google Scholar] [CrossRef]
- Battegazzore, D.; Bocchini, S.; Alongi, J.; Frache, A. Rice husk as bio-source of silica: Preparation and characterization of PLA–silica bio-composites. RSC Adv. 2014, 4, 54703–54712. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Fang, C.; Li, Y.; Zhang, Y.; Wang, P. The characterization of mechanical properties of Jute/PLA composites with modified nano Sio2 by coupling agent. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Malinowski, R.; Janczak, K.; Rytlewski, P.; Kaczor, A.R.; Moraczewski, K.; Żuk, T. Influence of glass microspheres on selected properties of polylactide composites. Compos. Part B 2015, 76, 13–19. [Google Scholar] [CrossRef]
- Bikiaris, D.N.; Vassiliou, A.A. Nanocomposite Coatings and Nanocomposites Materials; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2009. [Google Scholar]
- Stodolak-Zych, E.; Szumera, M.; Blazewicz, M. Osteoconductive nanocomposite materials for bone regeneration. Mater. Sci. Forum 2013, 730, 38–43. [Google Scholar] [CrossRef]
- Pedna, A.; Pinho, L.; Frediani, P.; Mosquera, M.J. Obtaining SiO2–fluorinated PLA bionanocomposites with application as reversible and highly-hydrophobic coatings of buildings. Prog. Org. Coat. 2016, 90, 91–100. [Google Scholar] [CrossRef]
- Gong, J.; Tian, N.; Wen, X.; Chen, X.; Liu, J.; Jiang, Z.; Mijowska, E.; Tang, T. Synergistic effect of fumed silica with Ni2O3 on improving flame retardancy of poly(lactic acid). Polym. Deg. Stab. 2014, 104, 18–27. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, B.; Wu, M.; Zhang, H.; Yao, J.; Chen, X.; Shao, Z. Preparation and characterization of antibacterial poly(lactic acid) nanocomposites with N-halamine modified silica. Inter. J. Biol. Macromol. 2020, 155, 1468–1477. [Google Scholar] [CrossRef]
- Sarikhani, K.; Jeddi, K.; Thompson, R.B.; Park, C.B.; Chen, P. Adsorption of surface-modified silica nanoparticles to the interface of melt poly (lactic acid) and supercritical carbon dioxide. Langmuir 2015, 31, 5571–5579. [Google Scholar] [CrossRef] [Green Version]
- Seng, C.T.; Noum, S.Y.A.E.; Sivanesan, S.K.A.; Yu, L.J. Reduction of hygroscopicity of PLA filament for 3D printing by introducing nano silica as filler. AIP Conf. Proceed. 2020, 2233, 020024. [Google Scholar] [CrossRef]
- Chen, H.M.; Wang, Y.P.; Chen, J.; Yang, J.H.; Zhang, N.; Huang, T.; Wang, Y. Hydrolytic degradation behavior of poly(L-lactide)/SiO2 composites. Polym. Degrad. Stab. 2013, 98, 2672–2679. [Google Scholar] [CrossRef]
- Kosowska, K.; Szatkowsk, P. Infuence of ZnO, SiO2 and TiO2 on the aging process of PLA fbers produced by electrospinning method. J. Therm. Anal. Calorim. 2020, 140, 1769–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bo, L.J.; Yong, L.X.; Feng, L.W.; Hao, Z.J. Preparation and characterization of bioactive poly (Lactic Acid)/SiO2-CaO composite membranes. J. Inorg. Mater. 2011, 26, 998–1002. [Google Scholar]
- Galikhanov, E.; Lounev, I.; Guzhova, A.; Gusev, Y.; Galikhanov, M.; Vasilyeva, M. Study of electret state in polylactic acid with nanosized filler by dielectric spectroscopy. AIP Conf. Proc. 2016, 1748, 020007. [Google Scholar] [CrossRef]
- Majola, A.; Vainionpää, S.; Vihtonen, K.; Vasenius, J.; Törmälä, P.; Rokkanen, P. Intramedullary Fixation of Cortical Bone Osteotomies with Self-Reinforced Polylactic Rods in Rabbits. Int. Orthop. 1992, 16, 101–108. [Google Scholar] [CrossRef]
- Abe, S.; Sasaki, A.; Iwadera, N.; Akasaka, T.; Uo, M.; Watari, F. Biodistribution and biocompatibility of poly(lactic acid)-coated SiO2 particle. Nano Biomed. 2011, 3, 300–305. [Google Scholar]
- Shen, Y.; Cao, B.; Snyder, N.R.; Woeppel, K.M.; Eles, J.R.; Cui, X.T. ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood-brain barrier. J. Nanobiotechnol. 2018, 16, 13. [Google Scholar] [CrossRef] [Green Version]
- Thongsang, S.; Sontikaew, S.; Kachapol, K.; Kaewkate, T.; Aunchanlung, W. Comparision of filler types in polylactic acide composites for 3D printing applications. Matter Int. J. Sci. Technol. 2020, 5, 98–109. [Google Scholar] [CrossRef]
- Jaikaew, N.; Petchsuk, A.; Opaprakasit, P. Preparation and properties of polylactide bio-composites with surface-modified silica particles. Chiang Mai J. Sci. 2018, 45, 2059–2068. [Google Scholar]
- Opaprakasit, P.; Boonpa, S.; Jaikaew, N.; Petchsuk, A.; Tangboriboonrat, P. Preparation of surface-modified silica particles from rice husk ash and its composites with degradable polylactic acid. Macromol. Symp. 2015, 354, 48–54. [Google Scholar] [CrossRef]
Silica (wt.%) | Tg (°C) | Tcc (°C) | Tonset (°C) | Tmax (°C) | ∆Hm (J/g) | Ref. |
---|---|---|---|---|---|---|
10 | - | - | 342.3 | 370.9 | - | [24] |
5.0 | 59 | 135 | - | - | 8 | [35] |
2.0 | 64.5 | 0 | - | - | 31.32 | [36] |
0.5 | 52.3 | 102.8 | 113.5 | - | 54.3 | [49] |
3.0 | 61.22 | 107.87 | 162.60 | 168.70 | 34.57 | [55] |
2.0 | 52.23 | - | - | - | - | [56] |
2.5 | 60 | - | - | - | 37 | [57] |
1.5 | - | - | - | 300 | - | [60] |
4.0 | 60.8 | 108.3 | 146.6 | 153.6 | 24.9 | [61] |
4.0 | - | - | 273 | 374 | - | [63] |
10 | - | - | - | 370 | - | [64] |
5.0 | - | 120 | - | - | 70 | [65] |
0.5 | 50.6 | - | - | - | - | [66] |
3.08 | 57.66 | 112.33 | 147.5 | 153.41 | 22.73 | [67] |
0.5 | 61.02 | 124.26 | - | - | - | [68] |
0.2 | - | - | 345.54 | 362.56 | - | [70] |
7.5 | 59.0 | - | 355.5 | 412.3 | - | [71] |
7.5 | 59.0 | 124.94 | - | - | 6.22 | [72] |
7.5 | 60.0 | 96.3 | 355.5 | 412.3 | 9.9 | [73] |
7.5 | 57.4 | 117 | - | - | - | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaseem, M.; Ur Rehman, Z.; Hossain, S.; Singh, A.K.; Dikici, B. A Review on Synthesis, Properties, and Applications of Polylactic Acid/Silica Composites. Polymers 2021, 13, 3036. https://doi.org/10.3390/polym13183036
Kaseem M, Ur Rehman Z, Hossain S, Singh AK, Dikici B. A Review on Synthesis, Properties, and Applications of Polylactic Acid/Silica Composites. Polymers. 2021; 13(18):3036. https://doi.org/10.3390/polym13183036
Chicago/Turabian StyleKaseem, Mosab, Zeeshan Ur Rehman, Shakhawat Hossain, Ashish Kumar Singh, and Burak Dikici. 2021. "A Review on Synthesis, Properties, and Applications of Polylactic Acid/Silica Composites" Polymers 13, no. 18: 3036. https://doi.org/10.3390/polym13183036
APA StyleKaseem, M., Ur Rehman, Z., Hossain, S., Singh, A. K., & Dikici, B. (2021). A Review on Synthesis, Properties, and Applications of Polylactic Acid/Silica Composites. Polymers, 13(18), 3036. https://doi.org/10.3390/polym13183036