Polymerization Shrinkage of Short Fiber Reinforced Dental Composite Using a Confocal Laser Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abouelleil, H.; Pradelle, N.; Villat, C.; Attik, N.; Colon, P.; Grosgogeat, B. Comparison of mechanical properties of a new fiber reinforced composite and bulk filling composites. Restor. Dent. Endod. 2015, 40, 262–270. [Google Scholar] [CrossRef]
- Miura, D.; Miyasaka, T.; Aoki, H.; Aoyagi, Y.; Ishida, Y. Correlations among bending test methods for dental hard resins. Dent. Mater. J. 2017, 36, 491–496. [Google Scholar] [CrossRef] [Green Version]
- Pallesen, U.; van Dijken, J.W. A randomized controlled 27 years follow up of three resin composites in Class II restorations. J. Dent. 2015, 43, 1547–1558. [Google Scholar] [CrossRef]
- Pallesen, U.; van Dijken, J.W. A randomized controlled 30 years follow up of three conventional resin composites in Class II restorations. Dent. Mater. 2015, 31, 1232–1244. [Google Scholar] [CrossRef]
- Darabi, F.; Seyed-Monir, A.; Mihandoust, S.; Maleki, D. The effect of preheating of composite resin on its color stability after immersion in tea and coffee solutions: An in-vitro study. J. Clin. Exp. Dent. 2019, 11, e1151–e1156. [Google Scholar] [CrossRef]
- Ardu, S.; Braut, V.; Di Bella, E.; Lefever, D. Influence of background on natural tooth colour coordinates: An in vivo evaluation. Odontology 2014, 102, 267–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Park, S.H. Evaluation of resin composite translucency by two different methods. Oper. Dent. 2013, 38, E76–E90. [Google Scholar] [CrossRef] [Green Version]
- Jandt, K.D.; Sigusch, B.W. Future perspectives of resin-based dental materials. Dent. Mater. 2009, 25, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Resin composite—State of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Borouziniat, A.; Khaki, H.; Majidinia, S. Retrospective evaluation of the clinical performance of direct composite restorations using the snow-plow technique: Up to 4 years follow-up. J. Clin. Exp. Dent. 2019, 11, e964–e968. [Google Scholar] [CrossRef]
- Maktabi, H.; Ibrahim, M.; Alkhubaizi, Q.; Weir, M.; Xu, H.; Strassler, H.; Fugolin, A.P.P.; Pfeifer, C.S.; Melo, M.A.S. Underperforming light curing procedures trigger detrimental irradiance-dependent biofilm response on incrementally placed dental composites. J. Dent. 2019, 88, 103110. [Google Scholar] [CrossRef] [PubMed]
- Ausiello, P.; Dal Piva, A.M.d.O.; Borges, A.L.S.; Lanzotti, A.; Zamparini, F.; Epifania, E.; Mendes Tribst, J.P. Effect of shrinking and no shrinking dentine and enamel replacing materials in posterior restoration: A 3D-FEA study. Appl. Sci. 2021, 11, 2215. [Google Scholar] [CrossRef]
- Davidson, C.; Feilzer, A.J. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J. Dent. 1997, 25, 435–440. [Google Scholar] [CrossRef]
- Leprince, J.G.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef]
- Asmussen, E.; Peutzfeldt, A. Two-step curing: Influence on conversion and softening of a dental polymer. Dent. Mater. 2003, 19, 466–470. [Google Scholar] [CrossRef]
- Ruddell, D.E.; Maloney, M.M.; Thompson, J.Y. Effect of novel filler particles on the mechanical and wear properties of dental composites. Dent. Mater. 2002, 18, 72–80. [Google Scholar] [CrossRef]
- Miyasaka, T. Effect of shape and size of silanated fillers on mechanical properties of experimental photo cure composite resins. Dent. Mater. J. 1996, 15, 98–110, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Versluis, A.; Douglas, W.H.; Sakaguchi, R.L. Thermal expansion coefficient of dental composites measured with strain gauges. Dent. Mater. 1996, 12, 290–294. [Google Scholar] [CrossRef]
- Al Sunbul, H.; Silikas, N.; Watts, D.C. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent. Mater. 2016, 32, 998–1006. [Google Scholar] [CrossRef] [Green Version]
- Kim, R.J.-Y.; Kim, Y.-J.; Choi, N.-S.; Lee, I.-B. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J. Dent. 2015, 43, 430–439. [Google Scholar] [CrossRef]
- Ilie, N.; Jelen, E.; Clementino-Luedemann, T.; Hickel, R. Low-shrinkage composite for dental application. Dent. Mater. J. 2007, 26, 149–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peutzfeldt, A. Resin composites in dentistry: The monomer systems. Eur. J. Oral Sci. 1997, 105, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Um, C.-M.; Lee, I.-B. Rheological properties of resin composites according to variations in monomer and filler composition. Dent. Mater. 2006, 22, 515–526. [Google Scholar] [CrossRef]
- Krause, W.R.; Park, S.H.; Straup, R.A. Mechanical properties of BIS-GMA resin short glass fiber composites. J. Biomed. Mater. Res. 1989, 23, 1195–1211. [Google Scholar] [CrossRef] [PubMed]
- Shouha, P.; Swain, M.; Ellakwa, A. The effect of fiber aspect ratio and volume loading on the flexural properties of flowable dental composite. Dent. Mater. 2014, 30, 1234–1244. [Google Scholar] [CrossRef]
- Lassila, L.; Garoushi, S.; Vallittu, P.K.; Säilynoja, E. Mechanical properties of fiber reinforced restorative composite with two distinguished fiber length distribution. J. Mech. Behav. Biomed. Mater. 2016, 60, 331–338. [Google Scholar] [CrossRef]
- Musanje, L.; Darvell, B.W. Curing-light attenuation in filled-resin restorative materials. Dent. Mater. 2006, 22, 804–817. [Google Scholar] [CrossRef]
- Ferracane, J.; Greener, E.H. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J. Biomed. Mater. Res. 1986, 20, 121–131. [Google Scholar] [CrossRef]
- Miyasaka, T.; Okamura, H. Dimensional change measurements of conventional and flowable composite resins using a laser displacement sensor. Dent. Mater. J. 2009, 28, 544–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanada, H. Realization of a high accuracy laser displacement meter based on triangulation. Trans. Soc. Instrum. Control. Eng. 1991, 27, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Morita, S.; Hosobata, T.; Takeda, M.; Yamagata, Y. On-machine measurement system of ultra-precision machine tool using confocal chromatic probe. In The Proceedings of the Manufacturing & Machine Tool Conference; Japan Society of Mechanical Engineers: Tokyo, Japan, 2019; (In Japanese). [Google Scholar] [CrossRef]
- Jang, J.H.; Park, S.H.; Hwang, I.N. Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin. Oper. Dent. 2015, 40, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Itoh, K.; Hisamitsu, H.; Wakumoto, S. Effect of cavosurface angle on dentin cavity adaptation of resin composites. Dent. Mater. J. 1999, 18, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Garoushi, S.; Säilynoja, E.; Vallittu, P.K.; Lassila, L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent. Mater. 2013, 29, 835–841. [Google Scholar] [CrossRef]
- Nak-Ho, S.; Suh, N.P. Effect of fiber orientation on friction and wear of fiber reinforced polymeric composites. Wear 1979, 53, 129–141. [Google Scholar] [CrossRef]
- Rueggeberg, F.A.; Caughman, W.F.; Curtis, J.W.; Davis, H.C. Factors affecting cure at depths within light-activated resin composites. Am. J. Dent. 1993, 6, 91–95. [Google Scholar]
- Garoushi, S.; Vallittu, P.K.; Lassila, L.V. Depth of cure and surface microhardness of experimental short fiber-reinforced composite. Acta Odontol. Scand. 2008, 66, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Le Bell, A.M.; Tanner, J.; Lassila, L.V.; Kangasniemi, I.; Vallittu, P.K. Depth of light-initiated polymerization of glass fiber-reinforced composite in a simulated root canal. Int. J. Prosthodont. 2003, 16, 403–408. [Google Scholar]
- Watts, D.; Marouf, A.; Al-Hindi, A.M. Photo-polymerization shrinkage-stress kinetics in resin-composites: Methods development. Dent. Mater. 2003, 19, 1–11. [Google Scholar] [CrossRef]
- Stansbury, J.W.; Trujillo-Lemon, M.; Lu, H.; Ding, X.; Lin, Y.; Ge, J. Conversion-dependent shrinkage stress and strain in dental resins and composites. Dent. Mater. 2005, 21, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Stansbury, J.W.; Bowman, C.N. Towards the elucidation of shrinkage stress development and relaxation in dental composites. Dent. Mater. 2004, 20, 979–986. [Google Scholar] [CrossRef]
- Braga, R.R.; Ballester, R.Y.; Ferracane, J.L. Factors involved in the development of polymerization shrinkage stress in resin-composites: A systematic review. Dent. Mater. 2005, 21, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.E.; Park, S.H. Comparison of premolar cuspal deflection in bulk or in incremental composite restoration methods. Oper. Dent. 2011, 36, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Suliman, A.A.; Boyer, D.B.; Lakes, R.S. Cusp movement in premolars resulting from composite polymerization shrinkage. Dent. Mater. 1993, 9, 6–10. [Google Scholar] [CrossRef]
- Ernst, C.-P.; Meyer, G.R.; Klöcker, K.; Willershausen, B. Determination of polymerization shrinkage stress by means of a photoelastic investigation. Dent. Mater. 2004, 20, 313–321. [Google Scholar] [CrossRef]
- Loguercio, A.D.; Reis, A.; Schroeder, M.; Balducci, I.; Versluis, A.; Ballester, R.Y. Polymerization shrinkage: Effects of boundary conditions and filling technique of resin composite restorations. J. Dent. 2004, 32, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.J.; Bicalho, A.A.; Tantbirojn, D.; Versluis, A. Polymerization shrinkage stresses in a premolar restored with different composite resins and different incremental techniques. J. Adhes. Dent. 2013, 15, 341–350. [Google Scholar] [PubMed]
- Ersen, K.A.; Gürbüz, Ö.; Özcan, M. Evaluation of polymerization shrinkage of bulk-fill resin composites using microcomputed tomography. Clin. Oral Investig. 2020, 24, 1687–1693. [Google Scholar] [CrossRef]
Code | Product Name | Base Monomer | Filler | Filler Content (wt%) | Shade | Manufacture |
---|---|---|---|---|---|---|
CF | Clearfil majesty ES Flow | Bis-GMA | Hybrid | 78 | A2 | Kuraray Noritake Dental, Tokyo, Japan |
XD | Ever X Flow (Dentin) | Bis-MEPP TEGDMA UDMA | Glass fibres Barium glass Silicon dioxide | 25 42–52 Trace | Dentin | GC, Tokyo, Japan |
XB | Ever X Flow (Bulk) | Bis-MEPP TEGDMA UDMA | Glass fibres Barium glass Silicon dioxide | 25 42–52 Trace | Bulk Shade | GC, Tokyo, Japan |
XP | EverX Posterior | Bis-GMA TEGDMA | Glass fibres Barium glass Silicon dioxide | 5–15 60–70 1–5 | Universal | GC, Tokyo, Japan |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miura, D.; Ishida, Y.; Shinya, A. Polymerization Shrinkage of Short Fiber Reinforced Dental Composite Using a Confocal Laser Analysis. Polymers 2021, 13, 3088. https://doi.org/10.3390/polym13183088
Miura D, Ishida Y, Shinya A. Polymerization Shrinkage of Short Fiber Reinforced Dental Composite Using a Confocal Laser Analysis. Polymers. 2021; 13(18):3088. https://doi.org/10.3390/polym13183088
Chicago/Turabian StyleMiura, Daisuke, Yoshiki Ishida, and Akikazu Shinya. 2021. "Polymerization Shrinkage of Short Fiber Reinforced Dental Composite Using a Confocal Laser Analysis" Polymers 13, no. 18: 3088. https://doi.org/10.3390/polym13183088
APA StyleMiura, D., Ishida, Y., & Shinya, A. (2021). Polymerization Shrinkage of Short Fiber Reinforced Dental Composite Using a Confocal Laser Analysis. Polymers, 13(18), 3088. https://doi.org/10.3390/polym13183088