Use of Dicyclopentadiene and Methyl Dicyclopentadiene for the Synthesis of Unsaturated Polyester Resins
Abstract
:1. Introduction
2. Method Section
2.1. Materials
2.2. Analysis
3. Results and Discussion
3.1. Appearance
3.2. Uncured UPs Properties
3.3. Reactivity
3.4. Dynamic Mechanical Analysis (DMA)
3.5. Tensile and Flexural Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Co | 1% solution of cobalt naphthenate in toluene |
DCPD | dicyclopentadiene |
DCPD90 | 90% dicyclopentadiene |
DCPD85 | 85% dicyclopentadiene |
DEG | diethylene glycol |
DiMeDCPD | dimethyl dicyclopentadiene |
DPMD65 | model of fully unsaturated polyester resin modified with 65% MeDCPD |
HQ | hydroquinone |
LPyGas | light pyrolysis gas |
MA | maleic anhydride |
MeDCPD | methyl dicyclopentadiene |
MeDCPD65 | 65% methyl dicyclopentadiene |
MEKP | methyl ethyl ketone peroxide |
Mn | number averaged molecular weight |
MW | weight average molecular weight |
N | the ratio of the phthalic anhydride equivalent and the maleic anhydride equivalent |
PA | phthalic anhydride |
PG | 1,2-propylene glycol |
R | the ratio of the hydroxyl equivalent and the carboxyl equivalent |
St | styrene |
TBF | Tributyl phosphite |
Tg | glass transition temperature |
UP | unsaturated polyester |
UPR | unsaturated polyester resin |
UP2 | standard unsaturated polyester resin |
UPMD65 | modified UP2 standard unsaturated polyester resin with MeDCPD65 |
UPD85 | modified UP2 standard unsaturated polyester resin with DCPD85 |
UPD90 | modified UP2 standard unsaturated polyester resin with DCPD90 |
References
- LEENDERS; Chiel, A.; Groote, R.; Laanen, A. Thermoforming of Dynamic Cross-Linked Polymer Compositions. WO2016009391A1, 21 January 2016. [Google Scholar]
- Montarnal, D.; Capelot, M.; Tournilhac, S.; Leibler, L. Silica like Malleable Materials from Permanent Organic Network. Science 2011, 334, 965–968. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, F. Polymer Physics: Applications to Molecular Association and Thermoreversible Gelation; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Mleziva, J. Polyestery, Jejich Výroba a Zpracování; SNTL-Nakladatelství Technické Literatury: Praha, Czech Republic, 1978. [Google Scholar]
- Krupka, J.; Štěpánek, K.; Herink, T. Dicyclopentadiene and Its Derivatives in Chemical Industry. Chem. Listy 2008, 102, 1107. [Google Scholar]
- Baley, C.; Perrot, Y.; Davies, P.; Bourmaud, A.; Grohens, Y. Mechanical Properties of Composites Based on Low Styrene Emission Polyester Resins for Marine Applications. Appl. Compos. Mater. 2006, 13, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Maurin, R.; Perrot, Y.; Bourmaud, A.; Davies, P.; Baley, C. Seawater Ageing of Low Styrene Emission Resins for Marine Composites: Mechanical Behaviour and Nano-Indentation Studies. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1024–1032. [Google Scholar] [CrossRef] [Green Version]
- Perrot, Y.; Baley, C.; Grohens, Y.; Davies, P. Damage Resistance of Composites Based on Glass Fibre Reinforced Low Styrene Emission Resins for Marine Applications. Appl. Compos. Mater. 2007, 14, 67–87. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.G.; Yang, L.S. Preparation, Properties and Applications of Unsaturated Polyesters. Mod. Polyest. Chem. Technol. Polyest. Copolyesters 2004, 697–713. [Google Scholar] [CrossRef]
- Mark, H.F.; Bikales, N.M.; Over-berger, C.G.; Menges, G.; Kroschwitz, J.I. Unsaturated Polyesters. In Encyclopedia of Polymer Science and Engineering; Wiley: Hoboken, NJ, USA, 1998; pp. 256–290. [Google Scholar]
- Penczek, P.; Jan, C. Unsaturated Polyester Resins: Chemistry and Technology. Crosslink. Mater. Sci. 2005, 184, 1–95. [Google Scholar]
- Keenan, M.J. Cyclopentadiene and Dicyclopentadiene. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Frydrych, A.; Ostrysz, R.; Penczek, P. The effect of built-in dicyclopentadiene on selected properties of unsaturated polyester resins. Polimery 1999, 44, 745–749. [Google Scholar] [CrossRef]
- Tsuchiya, S.; Oshima, A.; Hayshi, H. Hot Melt Adhesive Compositions Comprising Hydrogenated Resin and Ethylene-Polar Vinylic Compound Copolymer or Wax. U.S. Patent 4,360,622, 23 November 1982. [Google Scholar]
- Loza, D.J.R.R. Process for the Preparation of Dicyclopentadiene Modified Polyester Resins. U.S. Patent 6,515,071B1, 4 February 2003. [Google Scholar]
- Doskočil, J.; Bělohlav, Z.; Herink, T.; Zámostný, P. Improvement of pyrolysis reactors in Chemopetrol Litvinov. Chem. Listy 2003, 97, 1176. [Google Scholar]
- Karaba, A.; Zamostny, P.; Bělohlav, Z.; Lederer, J.; Herink, T. Application of a Semi-Mechanistic Model for Cracking Unit Balance. Chem. Eng. Technol. 2015, 38, 609. [Google Scholar] [CrossRef]
- Xu, R.; Jocz, J.N.; Wiest, L.K.; Sarngadharan, S.C.; Milina, M.; Coleman, J.S.; Iaccino, L.L.; Pollet, P.; Sievers, C.; Liotta, C.L. Cyclopentadiene Dimerization Kinetics in the Presence of C5 Alkenes and Alkadienes. Ind. Eng. Chem. Res. 2019, 58, 22516–22525. [Google Scholar] [CrossRef]
- Chiu, H.-T.; Chen, S.-C. Curing Reaction of Unsaturated Polyesters Modified with DCPD. J. Polym. Res. 2001, 8, 183–190. [Google Scholar] [CrossRef]
Name | Acronym | Supplier | |
---|---|---|---|
UP synthesis | Phthalic anhydride | PA | Spolchemie (Ústí nad Labem, Czech Republic) |
Maleic anhydride | MA | ||
1,2-propylene glycol | PG | ||
Diethylene glycol | DEG | ||
Tributyl phosphite | TBF | ||
90% dicyclopentadiene (DCPD) | DCPD90 | ORLEN Unipetrol (Litvínov-Záluží, Czech Republic) | |
85% DCPD | DCPD85 | ||
65% methyl dicyclopentadiene (MeDCPD) | MeDCPD65 | ||
Styrene | St | Spolchemie (Ústí nad Labem, Czech Republic) | |
Catalytic system | Hydroquinone | HQ | |
Methyl ethyl ketone peroxide | MEKP | ||
1% cobalt octoate in toluene | Co |
DCPD90 | DCPD85 | MeDCPD65 | |
---|---|---|---|
CPD | 0.0 | 0.0 | 0.0 |
Benzene | 0.0 | 0.0 | 0.0 |
Toluene | 0.0 | 0.0 | 0.0 |
Codimers A a, sum | 1.2 | 1.1 | 0.0 |
DCPD, sum | 90.7 | 84.3 | 20.6 |
Codimer B b | 1.4 | 1.9 | 2.0 |
MeDCPD, sum | 5.5 | 10.8 | 67.2 |
DiMeDCPD, sum | 0.2 | 0.3 | 2.5 |
Polyester Sample Name | Anhydrides | Glycols | Dicyclopentadiene Batch | Theoretical Parameter |
---|---|---|---|---|
UP2 (standard) | PA/MA a | PG/DEG b | / | N c = 1.20 R d = 1.10 |
UPD90 | DCPD90 | |||
UPD85 | DCPD85 | |||
UPMD65 | MeDCPD65 | |||
DPMD65 | MA | DEG | MeDCPD65 | R = 1.12 |
Compound | Amount |
---|---|
HQ | 0.0016% |
Co | 1% |
MEKP | 1% |
Analysis | Standard/Method | Instrument | Conditions |
---|---|---|---|
Color value | Gardner | LICO 620 (Hach Company, Loveland, CO, USA) | 23 °C |
Dynamic viscosity | ISO 2284 | Brookfield CAP2000+ (AMETEK Brookfield, Middleboro, MA, USA) | 25 °C/100 rpm/C1 (cone-plate) |
Dry matter | Internal method | Owen Binder (BINDER GmbH, Tuttlingen, Germany) | 150 °C for 30 min (1 g of resin with 3 drops of a 1% hydroquinone solution in ethanol) |
Density | ČSN EN ISO 1675 | Non relevant | 25 °C |
Acid value | ČSN EN ISO 2114 | Mettler Toledo T50 excellence titrator (Mettler Toledo, Colombus, OH, USA) | 23 °C |
Hydroxyl value | Internal method PP12 | Mettler Toledo T50 excellence titrator (Mettler Toledo, Colombus, OH, USA) | 23 °C |
Gel permeation chromatography (GPC) | ČSN ISO 13885-1 | Waters e2695 Refractive Index detector Waters 2414 (Waters corporation, Milford, MA, USA) | Column: PLgel 5µm MIXED-C 300 × 7.5 mm (Agilent technologies) |
Reactivity (monitoring of the sample’s temperature build-up) | Internal method | MULTILOGGER M 1200E (COMET system, Rožnov pod Radhoštěm Czech Republic) | 15 g polyester, 1% MEKP and 1% Co; 25 ± 2 °C |
Analysis Type | Temperature Ramp; Temperature Range | Frequency; Maximum Deformation | Specimen Dimensions |
---|---|---|---|
Torsion | 3 °C/min; 25–180 °C | 1 Hz; 1% | 26 mm × 10 mm × 3 mm |
Analysis Type | Tension | Bending |
---|---|---|
Standard | ČSN EN ISO 527-2 | ČSN EN ISO 178 Method B |
Speed | Module: 1 mm/min Strength: 2 mm/min | Module: 2 mm/min Strength: 10 mm/min |
Load cell | 50 kN | 50 kN |
Fixture | Pneumatic Zwick 10 kN (ZwickRoell, Ulm, Germany) | 3-point bending |
Extensometer | MultiXtens (ZwickRoell, Ulm, Germany) | MultiXtens (ZwickRoell, Ulm, Germany) |
UP2 | UPD90 | UP85 | UPMD65 | DPMD65 |
---|---|---|---|---|
1.5 | 4.8 | 5.3 | 9.2 | 6.0 |
UP2 | UPD90 | UPD85 | UPMD65 | DPMD65 | |
---|---|---|---|---|---|
E1 acid value (mg KOH/g) | Non relevant a | 245 | 256 | 254 | Not measurable b |
E2 acid value (mg KOH/g) | 43 | 44 | 42 | 50 | 40 |
Hydroxyl value (mg KOH/g) | 47 | 4 | 12 | 0 | 32 |
Mn (g/mol) | 1400 | 800 | 800 | 1000 | 1000 |
Mw (g/mol) | 3400 | 2300 | 2200 | 4000 | 5900 |
Polydispersity | 2.4 | 2.9 | 2.8 | 4.0 | 5.9 |
Dry matter (%) | 64.9 | 64.6 | 65.2 | 64.9 | 64.4 |
Dynamic viscosity (mPa·s) | 402 | 274 | 274 | 615 | 651 |
Density (uncured resin) | 1.134 | 1.115 | 1.116 | 1.117 | 1.120 |
Density (cured resin) | 1.231 | 1.198 | 1.200 | 1182 | 1.204 |
Volumetric shrinking (%) | 9 | 7 | 8 | 6 | 7 |
a Time (Min) | b Time (Min) | b Time/a Time Ratio | T Peak (°C) | |
---|---|---|---|---|
UP2 | 146 | 168 | 1.2 | 142 |
UPD90 | 67 | 104 | 1.8 | 112 |
UPD85 | 65 | 103 | 1.6 | 106 |
UPMD65 | 69 | 226 | 3.3 | 60 |
DPMD65 | 55 | 79 | 1,4 | 127 |
Tg at Maximal tanδ (°C) | Tg at Onset G′ (°C) | Tg at Maximal G″ (°C) | |
---|---|---|---|
UP2 | 93 | 66 | 95 |
UPD90 | 81 | 53 | 55 |
UPD85 | 80 | 53 | 55 |
UPMD65 | 73 | 21 | 16 |
DPMD65 | 101 | 78 | 82 |
Sample | Young Modulus | Tensile Strenght | Strain at Break |
---|---|---|---|
E (GPa) | σ (MPa) | εmax (%) | |
UP2 | 3.14 ± 0.13 | 63.0 ± 1.8 | 3.9 ± 0.8 |
UPD90 | 3.16 ± 0.11 | 48.3 ± 3.6 | 2.0 ± 0.2 |
UPD85 | 3.16 ± 0.05 | 46.6 ± 2.2 | 1.8 ± 0.1 |
UPMD65 | 0.46 ± 0.03 | 3.9 ± 0.2 | 0.9 ± 0.05 |
DPMD65 | 3.46 ± 0.03 | 53.2 ± 3.2 | 3.2 ± 1.8 |
Sample | Thickness | Flexural Modulus | Flexural Strength | Strain at Break |
---|---|---|---|---|
d (mm) | Ef (GPa) | σf (MPa) | εmax (%) | |
UP2 | 3.52 ± 0.1 | 3.10 ± 0.1 | 121.4 ± 1.1 | 4.8 ± 0.1 |
UPD90 | 3.59 ± 0.1 | 3.03 ± 0.1 | 115.6 ± 6.8 | 2.5 ± 0.6 |
UPD85 | 3.76 ± 0.04 | 3.13 ± 0.2 | 77.3 ± 19.0 | 1.1 ± 0.6 |
UPMD65 | 3.91 ± 0.04 | 0.42 ± 0.02 | 5.7 ± 0.4 | 1.0 ± 0.1 |
DPMD65 | 3.74 ± 0.01 | 3.62 ± 0.1 | 117.2 ± 17.6 | 2.3 ± 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrot, A.; Hyršl, J.; Bandžuch, J.; Waňousová, S.; Hájek, J.; Jenčík, J.; Herink, T. Use of Dicyclopentadiene and Methyl Dicyclopentadiene for the Synthesis of Unsaturated Polyester Resins. Polymers 2021, 13, 3135. https://doi.org/10.3390/polym13183135
Perrot A, Hyršl J, Bandžuch J, Waňousová S, Hájek J, Jenčík J, Herink T. Use of Dicyclopentadiene and Methyl Dicyclopentadiene for the Synthesis of Unsaturated Polyester Resins. Polymers. 2021; 13(18):3135. https://doi.org/10.3390/polym13183135
Chicago/Turabian StylePerrot, Alexandre, Jan Hyršl, Jan Bandžuch, Simona Waňousová, Jiří Hájek, Jan Jenčík, and Tomáš Herink. 2021. "Use of Dicyclopentadiene and Methyl Dicyclopentadiene for the Synthesis of Unsaturated Polyester Resins" Polymers 13, no. 18: 3135. https://doi.org/10.3390/polym13183135
APA StylePerrot, A., Hyršl, J., Bandžuch, J., Waňousová, S., Hájek, J., Jenčík, J., & Herink, T. (2021). Use of Dicyclopentadiene and Methyl Dicyclopentadiene for the Synthesis of Unsaturated Polyester Resins. Polymers, 13(18), 3135. https://doi.org/10.3390/polym13183135