Characterization of the Static, Creep, and Fatigue Tensile Behavior of Basalt Fiber/Polypropylene Composite Rods for Passive Concrete Reinforcement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation
2.2. Characterization Methods
3. Results and Discussion
3.1. Thermomechanical Properties
3.2. Static Properties at Elevated Temperatures
3.3. Creep Behavior (R = 1) at Room Temperature
3.4. Fatigue Behavior (0 < R < 1) at Room Temperature
3.5. Implications for Service Life and Design
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koch, G.; Brongers, M.; Thompson, N.; Virmani, Y.; Payer, J. Corrosion Costs and Preventative Strategies in the United States; Federal Highway Administration Report FHWA-RD-01-156; Federal Highway Administration: Washington, DC, USA, 2003.
- Val, D.V.; Stewart, M.G. Life-cycle cost analysis of reinforced concrete structures in marine environments. Struct. Saf. 2003, 25, 343–362. [Google Scholar] [CrossRef]
- Cheung, M.M.S.; So, K.K.L.; Zhang, X. Life cycle cost management of concrete structures relative to chloride-induced reinforcement corrosion. Struct. Infrastruct. Eng. 2012, 8, 1136–1150. [Google Scholar] [CrossRef]
- Zdanowicz, K.; Kotynia, R.; Marx, S. Prestressing concrete members with fibre-reinforced polymer reinforcement: State of research. Struct. Concr. 2019, 20, 872–885. [Google Scholar] [CrossRef]
- Balaguru, P.; Nanni, A.; Giancaspro, J. FRP Composites for Reinforced and Prestressed Concrete Structures: A Guide to Fundamentals and Design for Repair and Retrofit; Taylor: New York, NY, USA, 2009. [Google Scholar]
- Meier, U. Composite materials in bridge repair. Appl. Compos. Mater. 2000, 7, 75–94. [Google Scholar] [CrossRef]
- Maissen, A. Concrete beams prestressed with CFRP strands. Struct. Eng. Int. 1997, 7, 284–287. [Google Scholar] [CrossRef]
- Gudonis, E.; Timinskas, E.; Brigniak, V.; Kaklauskas, G.; Arnautov, A.; Vamulenas, V. FRP reinforcement for concrete structures: State-of-the-art review of application and design. Eng. Struct. Technol. 2013, 5, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Tanks, J.D.; Sharp, S.R.; Harris, D.K. Kinetics of in-plane shear degradation in carbon/epoxy rods from exposure to alkaline and saline environments. Compos. Part B 2017, 110, 204–212. [Google Scholar] [CrossRef]
- Ali, A.H.; Mohamed, H.M.; Benmokrane, B.; El Safty, A. Theory-based approaches and microstructural analysis to evaluate the service life-retention of stressed carbon fiber composite strands for concrete bridge applications. Compos. Part B 2019, 165, 279–292. [Google Scholar] [CrossRef]
- Bazli, M.; Zhao, X.-L.; Jafari, A.; Ashrafi, H.; Bai, Y.; Raman, S.; Khezrzadeh, H. Mechanical properties of pultruded GFRP profiles under seawater and concrete environment coupled with UV radiation and moisture. Construct. Build. Mater. 2020, 258, 120369. [Google Scholar] [CrossRef]
- Tanks, J.D.; Kubouchi, M.; Arao, Y. Diffusion kinetics, swelling, and degradation of corrosion-resistant C-glass/epoxy woven composites in harsh environments. Compos. Struct. 2018, 202, 686–694. [Google Scholar] [CrossRef]
- Lu, Z.; Xie, J.; Zhang, H.; Li, J. Long-term durability of basalt fiber-reinforced polymer (BFRP) sheets and the epoxy resin matrix under a wet-dry cyclic condition in a choride-containing environment. Polymers 2017, 9, 652. [Google Scholar] [CrossRef] [Green Version]
- Hashim, U.R.; Jumahat, A.; Jawaid, M.; Dungani, R.; Alamery, S. Effects of accelerated weathering on degradation behavior of basalt fiber reinforced polymer nanocomposites. Polymers 2020, 12, 2621. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Xu, F.X.; Li, G. Combustion performance and thermal stability of basalt fiber-reinforced polypropylene composites. Polymers 2019, 11, 1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, O.A.; Al Hawat, W.; Keshawarz, M. Durability and mechanical properties of concrete reinforced with basalt fiber-reinforced polymer (BFRP) bars: Toward sustainable infrastructure. Polymers 2021, 13, 1402. [Google Scholar] [CrossRef]
- Ricciardi, M.R.; Papa, I.; Coppola, G.; Lopresto, V.; Sansone, L.; Antonucci, V. Effect of plasma treatment on the impact behavior of epoxy/basalt fiber-reinforced composites: A preliminary study. Polymers 2021, 13, 1293. [Google Scholar] [CrossRef] [PubMed]
- Berardi, V.P.; Perrella, M.; Feo, L.; Cricri, G. Creep behavior of GFRP laminates and their phases: Experimental investigation and analytical modeling. Compos. Part B 2017, 122, 136–144. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Iwashita, K.; Sasaki, T.; Hamaguchi, Y. Tensile fatigue behavior of FRP and hybrid FRP sheets. Compos. Part B 2010, 41, 396–402. [Google Scholar] [CrossRef]
- Noel, M. Probabilistic fatigue life modelling of FRP composites for construction. Construct. Build. Mater. 2019, 206, 279–286. [Google Scholar] [CrossRef]
- Demers, C.E. Fatigue strength degradation of E-glass FRP composites and carbon FRP composites. Construct. Build. Mater. 1998, 12, 311–318. [Google Scholar] [CrossRef]
- Hollaway, L.C. Key issues in the use of fibre reinforced polymer (FRP) composites in the rehabilitation and retrofitting of concrete structures. In Service Life Estimation and Extension of Civil Engineering Structures; Karbhari, V.M., Lee, L.S., Eds.; Woodhead Publishing: Cambridge, UK, 2011; p. 3. [Google Scholar]
- Yang, Y.; Fahmy, M.F.M.; Guan, S.; Pan, Z.; Zhan, Y.; Zhao, T. Properties and applications of FRP cable on long-span cable-supported bridges: A review. Compos. Part B 2020, 190, 107934. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kato, Y.; Nishimura, T.; Uomoto, T. Creep rupture of FRP rods made of aramid, carbon and glass fibers. In Proceedings of the Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3), V. 2, Tokyo, Japan, 14–16 October 1997; Japan Concrete Institute: Tokyo, Japan, 1997; pp. 179–186. [Google Scholar]
- Saadatmanesh, H.; Tannous, F.E. Relaxation, creep, and fatigue behavior of carbon fiber-reinforced plastic tendons. ACI Mater. J. 1999, 96, 143–153. [Google Scholar]
- Wicaksono, S.; Chai, G.B. A review of advances in fatigue and life prediction of fiber-reinforced composites. J. Mater. Design Appl. 2013, 227, 179–195. [Google Scholar] [CrossRef]
- Admjadi, M.; Fatemi, A. A fatigue damage model for life prediction of injection-molded short glass fiber-reinforced thermoplastic composites. Polymers 2021, 13, 2250. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, J.; Wu, G.; Yang, L.; Wu, Z. Effectiveness of basalt FRP tendons for strengthening RC beams through the external prestressing technique. Eng. Struct. 2015, 101, 34–44. [Google Scholar] [CrossRef]
- Benmokrane, B.; Elgabbas, F.; Ahmed, E.A.; Cousin, P. Characterization and comparative durability study of glass/vinylester, basalt/vinylester, and basalt/epoxy FRP bars. J. Compos. Construct. 2015, 19, 04015008. [Google Scholar] [CrossRef]
- Ali, A.H.; Mohamed, H.M.; Benmokrane, B. Bar size effect on long-term durability of sand-coated basalt-FRP composite bars. Compos. Part B 2020, 195, 108059. [Google Scholar] [CrossRef]
- Ali, A.H.; Mohamed, H.M.; Benmokrane, B.; El Safty, A.; Chaallal, O. Durability performance and long-term prediction models of sand-coated basalt FRP bars. Compos. Part B 2019, 157, 248–258. [Google Scholar] [CrossRef]
- Wang, X.; Shi, J.; Liu, J.; Yang, L.; Wu, Z. Creep behavior of basalt fiber reinforced polymer tendons for prestressing application. Mater. Des. 2014, 59, 558–564. [Google Scholar] [CrossRef]
- Sokairge, H.; Elgabbas, F.; Rashad, A.; Elshafie, H. Long-term creep behavior of basalt fiber reinforced polymer bars. Construct. Build. Mater. 2020, 260, 120437. [Google Scholar] [CrossRef]
- El Refai, A. Durability and fatigue of basalt fiber-reinforced polymer bars gripped with steel wedge anchors. J. Compos. Construct. 2013, 17, 04013006. [Google Scholar] [CrossRef]
- Colombo, C.; Vergani, L.; Burman, M. Static and fatigue characterization of new basalt fibre reinforced composites. Compos. Struct. 2012, 94, 1165–1174. [Google Scholar] [CrossRef]
- Dorigato, A.; Pegoretti, A. Fatigue resistance of basalt fibers-reinforced laminates. J. Compos. Mater. 2012, 46, 1773–1785. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Wu, Z.; Zhu, Z. Fatigue behavior and failure mechanism of basalt FRP composites under long-term cyclic loads. Int. J. Fatigue 2016, 88, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wang, X.; Wu, Z.; Keller, T.; Vassilopoulos, A.P. Effect of stress ratios on tension-tension fatigue behavior and micro-damage evolution of basalt fiber-reinforced epoxy polymer composites. J. Mater. Sci. 2018, 53, 9545–9556. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Wu, Z. Experimental study on effect of resin matrix in basalt fiber reinforced polymer composites under static and fatigue loading. Construct. Build. Mater. 2020, 242, 118121. [Google Scholar] [CrossRef]
- Shi, J.; Wang, X.; Wu, Z.; Zhu, Z. Fatigue behavior of basalt fiber-reinforced polymer tendons under a marine environment. Construct. Build. Mater. 2017, 137, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Van den Oever, M.; Peijs, T. Continuous-glass-fibre-reinforced polypropylene composites, II: Influence of maleic-anhydride modified polypropylene on fatigue behavior. Compos. Part A 1998, 29, 227–239. [Google Scholar] [CrossRef]
- Gamstedt, E.K.; Berglund, L.A.; Peijs, T. Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene. Compos. Sci. Technol. 1999, 59, 759–768. [Google Scholar] [CrossRef]
- Bureau, M.N.; Denault, J. Fatigue resistance of continuous glass fiber/polypropylene composites: Temperature dependence. Polym. Compos. 2004, 25, 622–629. [Google Scholar] [CrossRef]
- Bureau, M.N.; Denault, J. Fatigue resistance of continuous glass fiber/polypropylene composites: Consolidation dependence. Compos. Sci. Technol. 2004, 64, 1785–1794. [Google Scholar] [CrossRef]
- Ignaczak, W.; Skob, A.L.; El Fray, M. Interfacial polarization in thermoplastic basalt fiber-reinforced composites. Polymers 2020, 12, 1486. [Google Scholar] [CrossRef]
- National Institute for Materials Science (NIMS); Komatsu Matere Co., Ltd. Gripping Device for Fiber Reinforced Plastic, Manufacturing Method for the Same. Japan Patent Office JP 2020-153001, 11 September 2020. (In Japanese). [Google Scholar]
- Barron, V.; Buggy, M.; McKenna, N.H. Frequency effects on the fatigue behaviour of carbon fibre reinforced polymer laminates. J. Mater. Sci. 2001, 36, 1755–1761. [Google Scholar] [CrossRef]
- ASTM D3479-02 Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials; ASTM International: West Conshohocken, PA, USA, 2002; p. 4.
- Kehrer, L.; Wicht, D.; Wood, J.T.; Bohlke, T. Dynamic mechanical analysis of pure and fiber-reinforced thermoset- and thermoplastic-based polymers and free volume-based viscoelastic modeling. GAMM-Mitteilungen 2018, 41, e201800007. [Google Scholar] [CrossRef]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Yazdani, N.; Filsaime, M.; Islam, S. Accelerated curing of silia-fume concrete. J. Mater. Civil. Eng. 2008, 20, 521. [Google Scholar] [CrossRef]
- Marguitu, D.B.; Diaconescu, C.I.; Ciocirlan, B.O. Mechanics of materials. In Mechanical Engineer’s Handbook; Marguitu, D.B., Ed.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 119–188. [Google Scholar]
- Lu, Z.; Feng, B.; Loh, C. Fatigue behavior and mean stress effect of thermoplastic polymers and composites. Fract. Struct. Integ. 2018, 12, 150–157. [Google Scholar]
- Bohm, M.; Glowacka, K. Fatigue life estimation with mean stress effect compensation for lightweight structures—The case of GLARE 2 composite. Polymers 2020, 12, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ACI 440.1R-15 Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer Bars; American Concrete Institute: Farmington Hills, MI, USA, 2015; Volume 24, pp. 11–12.
Temperature (°C) | σu (MPa) | EL (GPa) | m (-) |
---|---|---|---|
~23 | 733.5 | 26.7 | 24.55 |
80 | 733.5 | 23.9 | 21.67 |
120 | 718.8 | 23.7 | 17.83 |
R | a | b | σe,max/σu |
---|---|---|---|
0.1 | 1211.1 | −0.092 | 0.15 |
0.3 | 1054.0 | −0.116 | 0.20 |
0.5 | 663.0 | −0.115 | 0.20 |
0.7 | 575.6 | −0.114 | 0.25 |
0.9 | 391.5 | −0.121 | 0.40 |
1.0 | 607.8 | −0.011 | 0.75 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanks, J.; Naito, K.; Ueda, H. Characterization of the Static, Creep, and Fatigue Tensile Behavior of Basalt Fiber/Polypropylene Composite Rods for Passive Concrete Reinforcement. Polymers 2021, 13, 3136. https://doi.org/10.3390/polym13183136
Tanks J, Naito K, Ueda H. Characterization of the Static, Creep, and Fatigue Tensile Behavior of Basalt Fiber/Polypropylene Composite Rods for Passive Concrete Reinforcement. Polymers. 2021; 13(18):3136. https://doi.org/10.3390/polym13183136
Chicago/Turabian StyleTanks, Jonathon, Kimiyoshi Naito, and Hisai Ueda. 2021. "Characterization of the Static, Creep, and Fatigue Tensile Behavior of Basalt Fiber/Polypropylene Composite Rods for Passive Concrete Reinforcement" Polymers 13, no. 18: 3136. https://doi.org/10.3390/polym13183136
APA StyleTanks, J., Naito, K., & Ueda, H. (2021). Characterization of the Static, Creep, and Fatigue Tensile Behavior of Basalt Fiber/Polypropylene Composite Rods for Passive Concrete Reinforcement. Polymers, 13(18), 3136. https://doi.org/10.3390/polym13183136