Hybrid and Synthetic FRP Composites under Different Strain Rates: A Review
Abstract
:1. Introduction
2. Polymer Matrix Hybrid Composites’ Contents
2.1. Fibers
2.1.1. Synthetic Fibers
2.1.2. Natural Fiber
2.2. Polymeric Resins
2.2.1. Thermoplastics
2.2.2. Thermosets
3. Hybrid and Synthetic FRP Composites under Different Loading
3.1. Low Strain Rate Experiments
3.2. Medium Strain Rate Experiments
3.3. High Strain Rate Experiments
3.4. Failure Modes in FRP Composites under Impact Loading
4. Numerical and Analytical Models
5. Concluding Remarks
Existing Challenges
- Less attention has been paid to hybrid structures under high-impact loading.
- Hybrid structures should take advantage of modern fabrication techniques to reduce the cost, provide repeatability, and increase mechanical properties.
- The most critical failure mode in hybrid and natural fiber composites is related to the interface bonding and interphase region, which can be intensified by using advanced preparation and fabrication techniques.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jacob, G.C.; Starbuck, J.M.; Fellers, J.F.; Simunovic, S.; Boeman, R.G. Strain rate effects on the mechanical properties of polymer composite materials. J. Appl. Polym. Sci. 2004, 94, 296–301. [Google Scholar] [CrossRef]
- Fiore, V.; Di Bella, G.; Valenza, A. Glass–basalt/epoxy hybrid composites for marine applications. Mater. Des. 2011, 32, 2091–2099. [Google Scholar] [CrossRef]
- Ahmed, A.; Wei, L. The low-velocity impact damage resistance of the composite structures—A review. Rev. Adv. Mater. Sci. 2015, 40, 127–145. [Google Scholar]
- De Azevedo, A.R.; Cruz, A.S.; Marvila, M.T.; Oliveira, L.B.D.; Monteiro, S.N.; Vieira, C.M.F.; Fediuk, R.; Timokhin, R.; Vatin, N.; Daironas, M. Natural Fibers as an Alternative to Synthetic Fibers in Reinforcement of Geopolymer Matrices: A Comparative Review. Polymers 2021, 13, 2493. [Google Scholar] [CrossRef]
- Espinach, F.X. Advances in Natural Fibers and Polymers. Materials 2021, 14, 2607. [Google Scholar] [CrossRef] [PubMed]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Bai, Y.; Chen, X.; Liu, W. A review on raw materials, commercial production and properties of lyocell fiber. J. Bioresour. Bioprod. 2020, 5, 16–25. [Google Scholar] [CrossRef]
- Karvanis, K.; Rusnáková, S.; Krejčí, O.; Žaludek, M. Preparation, thermal analysis, and mechanical properties of basalt fiber/epoxy composites. Polymers 2020, 12, 1785. [Google Scholar] [CrossRef] [PubMed]
- Al-Maqdasi, Z.; Joffe, R.; Ouarga, A.; Emami, N.; Chouhan, S.S.; Landström, A.; Hajlane, A. Conductive Regenerated Cellulose Fibers for Multi-Functional Composites: Mechanical and Structural Investigation. Materials 2021, 14, 1746. [Google Scholar] [CrossRef] [PubMed]
- Mochane, M.J.; Magagula, S.I.; Sefadi, J.S.; Mokhena, T.C. A Review on Green Composites Based on Natural Fiber-Reinforced Polybutylene Succinate (PBS). Polymers 2021, 13, 1200. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yin, J.; Liu, X.; Xia, A.; Huang, Z. Fabrication of Core-Shell Chopped Cf-Phenolic Resin Composite Powder for Laser Additive Manufacturing of Cf/SiC Composites. Polymers 2021, 13, 463. [Google Scholar] [CrossRef]
- Kiruthika, A. A review on physico-mechanical properties of bast fibre reinforced polymer composites. J. Build. Eng. 2017, 9, 91–99. [Google Scholar] [CrossRef]
- Ahmad, F.; Choi, H.S.; Park, M.K. A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol. Mater. Eng. 2015, 300, 10–24. [Google Scholar] [CrossRef]
- Saba, N.; Paridah, M.; Abdan, K.; Ibrahim, N.A. Dynamic mechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Constr. Build. Mater. 2016, 124, 133–138. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Ali, Z.; Gao, Y.; Tang, B.; Wu, X.; Wang, Y.; Li, M.; Hou, X.; Li, L.; Jiang, N.; Yu, J. Preparation, properties and mechanisms of carbon fiber/polymer composites for thermal management applications. Polymers 2021, 13, 169. [Google Scholar] [CrossRef]
- Mochane, M.; Mokhena, T.C.; Mokhothu, T.; Mtibe, A.; Sadiku, E.; Ray, S.S.; Ibrahim, I.; Daramola, O. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polym. Lett. 2019, 13, 159–198. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, Y.; Chen, L.; Zhang, S.; Pan, N. Influence of fabric structure and thickness on the ballistic impact behavior of Ultrahigh molecular weight polyethylene composite laminate. Mater. Des. (1980–2015) 2014, 54, 315–322. [Google Scholar] [CrossRef]
- Bandaru, A.K.; Ahmad, S.; Bhatnagar, N. Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics. Compos. Part A Appl. Sci. Manuf. 2017, 97, 151–165. [Google Scholar] [CrossRef]
- Yahaya, R.; Sapuan, S.; Jawaid, M.; Leman, Z.; Zainudin, E. Quasi-static penetration and ballistic properties of kenaf-aramid hybrid composites. Mater. Des. 2014, 63, 775–782. [Google Scholar] [CrossRef]
- Yahaya, R.; Sapuan, S.; Jawaid, M.; Leman, Z.; Zainudin, E. Measurement of ballistic impact properties of woven kenaf-aramid hybrid composites. Measurement 2016, 77, 335–343. [Google Scholar] [CrossRef]
- Jha, K.; Samantaray, B.B.; Tamrakar, P. A study on erosion and mechanical behavior of jute/e-glass hybrid composite. Mater. Today Proc. 2018, 5, 5601–5607. [Google Scholar] [CrossRef]
- Yorseng, K.; Rangappa, S.M.; Pulikkalparambil, H.; Siengchin, S.; Parameswaranpillai, J. Accelerated weathering studies of kenaf/sisal fiber fabric reinforced fully biobased hybrid bioepoxy composites for semi-structural applications: Morphology, thermo-mechanical, water absorption behavior and surface hydrophobicity. Constr. Build. Mater. 2020, 235, 117464. [Google Scholar] [CrossRef]
- Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol. 2017, 27, R713–R715. [Google Scholar] [CrossRef] [PubMed]
- Anilkumar, S.; Arumugam, K.; Mutyala, V.R.; Ram, K.K.; Kumar, T.K. Investigation on mechanical properties of natural fiber-polymer composite materials. Mater. Today Proc. 2021, 45, 6149–6153. [Google Scholar] [CrossRef]
- Parkunam, N.; Navaneethakrishan, G.; Saravanan, S.; Sureshkumar, B.; Sathishkumar, G. Mechanical characterization of hybrid laminates composites. Mater. Today Proc. 2020, 21, 15–18. [Google Scholar] [CrossRef]
- Chakraborty, S.; Pisal, A.; Kothari, V.; Venkateswara Rao, A. Synthesis and characterization of fibre reinforced silica aerogel blankets for thermal protection. Adv. Mater. Sci. Eng. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Rocha, H.; Lafont, U.; Semprimoschnig, C. Environmental testing and characterization of fibre reinforced silica aerogel materials for Mars exploration. Acta Astronaut. 2019, 165, 9–16. [Google Scholar] [CrossRef]
- Lu, Z.; Yuan, Z.; Liu, Q.; Hu, Z.; Xie, F.; Zhu, M. Multi-scale simulation of the tensile properties of fiber-reinforced silica aerogel composites. Mater. Sci. Eng. A 2015, 625, 278–287. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Yan, K.; Lu, S. Corrosion behavior of spray formed 7055 aluminum alloy joint welded by underwater friction stir welding. Mater. Des. 2015, 68, 97–103. [Google Scholar] [CrossRef]
- Boopalan, M.; Niranjanaa, M.; Umapathy, M. Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos. Part B Eng. 2013, 51, 54–57. [Google Scholar] [CrossRef]
- Cavalcanti, D.; Banea, M.; Neto, J.; Lima, R.; Da Silva, L.; Carbas, R. Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites. Compos. Part B Eng. 2019, 175, 107149. [Google Scholar] [CrossRef]
- Braga, R.; Magalhaes Jr, P. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites. Mater. Sci. Eng. C 2015, 56, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Chee, S.S.; Jawaid, M.; Sultan, M.; Alothman, O.Y.; Abdullah, L.C. Accelerated weathering and soil burial effects on colour, biodegradability and thermal properties of bamboo/kenaf/epoxy hybrid composites. Polym. Test. 2019, 79, 106054. [Google Scholar] [CrossRef]
- Dunne, R.; Desai, D.; Sadiku, R. Material characterization of blended sisal-kenaf composites with an ABS matrix. Appl. Acoust. 2017, 125, 184–193. [Google Scholar] [CrossRef]
- Thiagamani, S.M.K.; Krishnasamy, S.; Muthukumar, C.; Tengsuthiwat, J.; Nagarajan, R.; Siengchin, S.; Ismail, S.O. Investigation into mechanical, absorption and swelling behaviour of hemp/sisal fibre reinforced bioepoxy hybrid composites: Effects of stacking sequences. Int. J. Biol. Macromol. 2019, 140, 637–646. [Google Scholar] [CrossRef]
- Pappu, A.; Pickering, K.L.; Thakur, V.K. Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Ind. Crops Prod. 2019, 137, 260–269. [Google Scholar] [CrossRef]
- Zareei, N.; Geranmayeh, A.; Eslami-Farsani, R. Interlaminar shear strength and tensile properties of environmentally-friendly fiber metal laminates reinforced by hybrid basalt and jute fibers. Polym. Test. 2019, 75, 205–212. [Google Scholar] [CrossRef]
- Samanta, S.; Muralidhar, M.; Sarkar, S. Characterization of mechanical properties of hybrid bamboo/GFRP and jute/GFRP composites. Mater. Today Proc. 2015, 2, 1398–1405. [Google Scholar] [CrossRef]
- Neher, B.; Bhuiyan, M.M.R.; Kabir, H.; Gafur, M.A.; Qadir, M.R.; Ahmed, F. Thermal properties of palm fiber and palm fiber-reinforced ABS composite. J. Therm. Anal. Calorim. 2016, 124, 1281–1289. [Google Scholar] [CrossRef]
- Safri, S.N.A.; Sultan, M.T.H.; Jawaid, M.; Jayakrishna, K. Impact behaviour of hybrid composites for structural applications: A review. Compos. Part B Eng. 2018, 133, 112–121. [Google Scholar] [CrossRef]
- Ramnath, B.V.; Manickavasagam, V.; Elanchezhian, C.; Krishna, C.V.; Karthik, S.; Saravanan, K. Determination of mechanical properties of intra-layer abaca-jute-glass fiber reinforced composite. Mater. Des. 2014, 60, 643–652. [Google Scholar] [CrossRef]
- Maslinda, A.; Majid, M.A.; Ridzuan, M.; Afendi, M.; Gibson, A. Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos. Struct. 2017, 167, 227–237. [Google Scholar] [CrossRef]
- Bisaria, H.; Gupta, M.; Shandilya, P.A.; Srivastava, R. Effect of fibre length on mechanical properties of randomly oriented short jute fibre reinforced epoxy composite. Mater. Today Proc. 2015, 2, 1193–1199. [Google Scholar] [CrossRef]
- Sakthivel, M.; Vijayakumar, S.; Ramesh, S. Production and characterization of luffa/coir reinforced polypropylene composite. Procedia Mater. Sci. 2014, 5, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Al-Oqla, F.M.; Sapuan, S. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 2014, 66, 347–354. [Google Scholar] [CrossRef]
- Hao, A.; Zhao, H.; Chen, J.Y. Kenaf/polypropylene nonwoven composites: The influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Compos. Part B Eng. 2013, 54, 44–51. [Google Scholar] [CrossRef]
- Mashouf Roudsari, G.; Mohanty, A.K.; Misra, M. Green approaches to engineer tough biobased epoxies: A review. ACS Sustain. Chem. Eng. 2017, 5, 9528–9541. [Google Scholar] [CrossRef]
- Tan, B.K.; Ching, Y.C.; Poh, S.C.; Abdullah, L.C.; Gan, S.N. A review of natural fiber reinforced poly (vinyl alcohol) based composites: Application and opportunity. Polymers 2015, 7, 2205–2222. [Google Scholar] [CrossRef] [Green Version]
- El-Sabbagh, A.; Steuernagel, L.; Ring, J.; Toepfer, O. Development of natural fiber/engineering plastics composites with flame retardance properties. AIP Conf. Proc. 2016, 1779, 030020. [Google Scholar]
- Mansor, M.R.; Sapuan, S.; Zainudin, E.S.; Nuraini, A.; Hambali, A. Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design. Mater. Des. 2013, 51, 484–492. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, Q.; Guo, C.; Song, Y.; Cooper, P.A. Effect of zinc borate and wood flour on thermal degradation and fire retardancy of polyvinyl chloride (PVC) composites. J. Anal. Appl. Pyrolysis 2013, 100, 230–236. [Google Scholar] [CrossRef]
- Turku, I.; Kärki, T. Accelerated weathering of fire-retarded wood-polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2016, 81, 305–312. [Google Scholar] [CrossRef]
- Makhlouf, G.; Hassan, M.; Nour, M.; Abdel-Monem, Y.K.; Abdelkhalik, A. Evaluation of fire performance of linear low-density polyethylene containing novel intumescent flame retardant. J. Therm. Anal. Calorim. 2017, 130, 1031–1041. [Google Scholar] [CrossRef]
- Fei, M.-E.; Xie, T.; Liu, W.; Chen, H.; Qiu, R. Surface grafting of bamboo fibers with 1, 2-epoxy-4-vinylcyclohexane for reinforcing unsaturated polyester. Cellulose 2017, 24, 5505–5514. [Google Scholar] [CrossRef]
- Lai, S.-M.; Kao, Y.-H.; Liu, Y.-K.; Chiu, F.-C. Preparation and properties of luffa fiber-and kenaf fiber-filled poly (butylene succinate-co-lactate)/starch blend-based biocomposites. Polym. Test. 2016, 50, 191–199. [Google Scholar] [CrossRef]
- Kwon, H.-J.; Sunthornvarabhas, J.; Park, J.-W.; Lee, J.-H.; Kim, H.-J.; Piyachomkwan, K.; Sriroth, K.; Cho, D. Tensile properties of kenaf fiber and corn husk flour reinforced poly (lactic acid) hybrid bio-composites: Role of aspect ratio of natural fibers. Compos. Part B Eng. 2014, 56, 232–237. [Google Scholar] [CrossRef]
- Lu, T.; Liu, S.; Jiang, M.; Xu, X.; Wang, Y.; Wang, Z.; Gou, J.; Hui, D.; Zhou, Z. Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly (lactic acid) composites. Compos. Part B Eng. 2014, 62, 191–197. [Google Scholar] [CrossRef]
- Brostow, W.; Datashvili, T.; Jiang, P.; Miller, H. Recycled HDPE reinforced with sol-gel silica modified wood sawdust. Eur. Polym. J. 2016, 76, 28–39. [Google Scholar] [CrossRef]
- Schirp, A.; Su, S. Effectiveness of pre-treated wood particles and halogen-free flame retardants used in wood-plastic composites. Polym. Degrad. Stab. 2016, 126, 81–92. [Google Scholar] [CrossRef]
- Idumah, C.I.; Hassan, A. Characterization and preparation of conductive exfoliated graphene nanoplatelets kenaf fibre hybrid polypropylene composites. Synth. Met. 2016, 212, 91–104. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Lian, H.-Y.; Shih, Y.-F.; Chen-Wei, S.-M.; Jeng, R.-J. Preparation, characterization and crystallization kinetics of Kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites. Mater. Chem. Phys. 2017, 196, 249–255. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Weng, Y.-X.; Wang, L. Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polym. Test. 2014, 36, 119–125. [Google Scholar] [CrossRef]
- Couture, A.; Lebrun, G.; Laperrière, L. Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers. Compos. Struct. 2016, 154, 286–295. [Google Scholar] [CrossRef]
- Birnin-Yauri, A.U.; Ibrahim, N.A.; Zainuddin, N.; Abdan, K.; Then, Y.Y.; Chieng, B.W. Effect of maleic anhydride-modified poly (lactic acid) on the properties of its hybrid fiber biocomposites. Polymers 2017, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Edhirej, A.; Sapuan, S.; Jawaid, M.; Zahari, N.I. Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties. Int. J. Biol. Macromol. 2017, 101, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.; Rajmohan, T. Fabrication and characterization of MWCNT filled hybrid natural fiber composites. J. Nat. Fibers 2017, 14, 864–874. [Google Scholar] [CrossRef]
- Saba, N.; Paridah, M.; Abdan, K.; Ibrahim, N. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Mater. Chem. Phys. 2016, 184, 64–71. [Google Scholar] [CrossRef]
- Jumah, T.A.; Abood, M.B. Evaluation of the intermediate layer of graphite bonded metal. Am. J. Mater. Sci. 2016, 6, 58–66. [Google Scholar]
- Sapiai, N.; Jumahat, A.; Mahmud, J. Flexural and tensile properties of kenaf/glass fibres hybrid composites filled with carbon nanotubes. J. Teknol. 2015, 76. [Google Scholar] [CrossRef] [Green Version]
- Kumara, B.; Vas, J.; Bhat, S.; Madhyastha, N. A study on the vibration characteristics of bagasse-banana fibre hybrid composite. Int. J. Compos. Mater. 2017, 7, 150–154. [Google Scholar]
- Nejad, A.F.; Chiandussi, G.; Solimine, V.; Serra, A. Estimation of the synchronization time of a transmission system through multi body dynamic analysis. Int. J. Mech. Eng. Robot. Res. 2017, 6, 232–236. [Google Scholar] [CrossRef] [Green Version]
- Farokhi Nejad, A.; Chiandussi, G.; Solimine, V.; Serra, A. Study of a synchronizer mechanism through multibody dynamic analysis. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 233, 1601–1613. [Google Scholar] [CrossRef]
- Mlýnek, J.; Petrů, M.; Martinec, T.; Rahimian Koloor, S.S. Fabrication of high-quality polymer composite frame by a new method of fiber winding process. Polymers 2020, 12, 1037. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.S.; Arumugam, V.; Dhakal, H.N.; John, R. Effect of temperature and hybridisation on the low velocity impact behavior of hemp-basalt/epoxy composites. Compos. Struct. 2015, 125, 407–416. [Google Scholar] [CrossRef]
- Xia, C.; Yu, J.; Shi, S.Q.; Qiu, Y.; Cai, L.; Wu, H.F.; Ren, H.; Nie, X.; Zhang, H. Natural fiber and aluminum sheet hybrid composites for high electromagnetic interference shielding performance. Compos. Part B Eng. 2017, 114, 121–127. [Google Scholar] [CrossRef]
- Koloor, S.; Tamin, M. Effects of lamina damages on flexural stiffness of CFRP composites. In Proceedings of the 8th Asian-Australasian Conference on Composite Materials, Kuala Lumpur, Malaysia, 6–8 November 2012. [Google Scholar]
- Atiqah, A.; Maleque, M.; Jawaid, M.; Iqbal, M. Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications. Compos. Part B Eng. 2014, 56, 68–73. [Google Scholar] [CrossRef]
- Xia, C.; Shi, S.Q.; Wu, Y.; Cai, L. High pressure-assisted magnesium carbonate impregnated natural fiber-reinforced composites. Ind. Crops Prod. 2016, 86, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Zhang, S.; Ren, H.; Shi, S.Q.; Zhang, H.; Cai, L.; Li, J. Scalable fabrication of natural-fiber reinforced composites with electromagnetic interference shielding properties by incorporating powdered activated carbon. Materials 2016, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Ren, H.; Shi, S.Q.; Zhang, H.; Cheng, J.; Cai, L.; Chen, K.; Tan, H.-S. Natural fiber composites with EMI shielding function fabricated using VARTM and Cu film magnetron sputtering. Appl. Surf. Sci. 2016, 362, 335–340. [Google Scholar] [CrossRef]
- Xia, C.; Shi, S.Q.; Cai, L.; Hua, J. Property enhancement of kenaf fiber composites by means of vacuum-assisted resin transfer molding (VARTM). Holzforschung 2015, 69, 307–312. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Sarasini, F.; Santulli, C.; Tirillò, J.; Zhang, Z.; Arumugam, V. Effect of basalt fibre hybridisation on post-impact mechanical behaviour of hemp fibre reinforced composites. Compos. Part A Appl. Sci. Manuf. 2015, 75, 54–67. [Google Scholar] [CrossRef]
- Ding, Z.; Shi, S.Q.; Zhang, H.; Cai, L. Electromagnetic shielding properties of iron oxide impregnated kenaf bast fiberboard. Compos. Part B Eng. 2015, 78, 266–271. [Google Scholar] [CrossRef] [Green Version]
- Abdi, B.; Koloor, S.; Abdullah, M.; Amran, A.; Yahya, M.Y. Effect of strain-rate on flexural behavior of composite sandwich panel. Appl. Mech. Mater. 2012, 229–231, 766–770. [Google Scholar] [CrossRef]
- Naik, N.; Kavala, V.R. High strain rate behavior of woven fabric composites under compressive loading. Mater. Sci. Eng. A 2008, 474, 301–311. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, K.; Li, Y.; Huang, R.; Ye, Z.; Zhang, Y.; Ma, J. A study of strain-rate effect and fiber reinforcement effect on dynamic behavior of steel fiber-reinforced concrete. Constr. Build. Mater. 2018, 158, 657–669. [Google Scholar] [CrossRef]
- Farokhi Nejad, A.; Alipour, R.; Shokri Rad, M.; Yazid Yahya, M.; Rahimian Koloor, S.S.; Petrů, M. Using finite element approach for crashworthiness assessment of a polymeric auxetic structure subjected to the axial loading. Polymers 2020, 12, 1312. [Google Scholar] [CrossRef]
- Ramakrishnan, K.R.; Quino, G.; Hoffmann, J.; Petrinic, N. High Strain Rate Characterization and Impact Analysis of Fiber Reinforced Composites. In Dynamic Behavior of Materials, Proceedings of the 2020 Annual Conference on Experimental and Applied Mechanics, Online, 14–17 September 2020; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1, pp. 95–99. [Google Scholar]
- Kolsky, H. An investigation of the mechanical properties of materials at very high rates of loading. Proc. Phys. Soc. Sect. B 1949, 62, 676. [Google Scholar] [CrossRef]
- Davies, E.; Hunter, S. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J. Mech. Phys. Solids 1963, 11, 155–179. [Google Scholar] [CrossRef]
- Walley, S.; Field, J.; Pope, R.; Safford, N. The rapid deformation behaviour of various polymers. J. Phys. III 1991, 1, 1889–1925. [Google Scholar] [CrossRef]
- Walley, S.M.; Field, J.E.; Pope, P.; Safford, N. A study of the rapid deformation behaviour of a range of polymers. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1989, 328, 1–33. [Google Scholar]
- Walley, S.; Field, J. Strain rate sensitivity of polymers in compression from low to high rates. DYMAT J. 1994, 1, 211–227. [Google Scholar]
- Rae, P.; Dattelbaum, D. The properties of poly (tetrafluoroethylene)(PTFE) in compression. Polymer 2004, 45, 7615–7625. [Google Scholar] [CrossRef]
- Brown, E.N.; Rae, P.J.; Orler, E.B. The influence of temperature and strain rate on the constitutive and damage responses of polychlorotrifluoroethylene (PCTFE, Kel-F 81). Polymer 2006, 47, 7506–7518. [Google Scholar] [CrossRef]
- Brown, E.N.; Rae, P.J.; Orler, E.B.; Gray, G.T., III; Dattelbaum, D.M. The effect of crystallinity on the fracture of polytetrafluoroethylene (PTFE). Mater. Sci. Eng. C 2006, 26, 1338–1343. [Google Scholar] [CrossRef]
- Brown, E.; Trujillo, C.; Gray, G., III; Rae, P.; Bourne, N. Soft recovery of polytetrafluoroethylene shocked through the crystalline phase II-III transition. J. Appl. Phys. 2007, 101, 024916. [Google Scholar] [CrossRef]
- Rae, P.; Brown, E. The properties of poly (tetrafluoroethylene)(PTFE) in tension. Polymer 2005, 46, 8128–8140. [Google Scholar] [CrossRef]
- Rae, P.J.; Brown, E.N.; Clements, B.E.; Dattelbaum, D.M. Pressure-induced phase change in poly (tetrafluoroethylene) at modest impact velocities. J. Appl. Phys. 2005, 98, 063521. [Google Scholar] [CrossRef]
- Bourne, N.; Brown, E.; Millett, J.; Gray, G., III. Shock, release and Taylor impact of the semicrystalline thermoplastic polytetrafluoroethylene. J. Appl. Phys. 2008, 103, 074902. [Google Scholar] [CrossRef]
- Shergold, O.A.; Fleck, N.A.; Radford, D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int. J. Impact Eng. 2006, 32, 1384–1402. [Google Scholar] [CrossRef]
- Tao, W.; Shen, J.; Chen, Y.; Liu, J.; Gao, Y.; Wu, Y.; Zhang, L.; Tsige, M. Strain rate and temperature dependence of the mechanical properties of polymers: A universal time-temperature superposition principle. J. Chem. Phys. 2018, 149, 044105. [Google Scholar] [CrossRef]
- Federico, C.; Bouvard, J.-L.; Combeaud, C.; Billon, N. Large strain/time dependent mechanical behaviour of PMMAs of different chain architectures. Application of time-temperature superposition principle. Polymer 2018, 139, 177–187. [Google Scholar] [CrossRef]
- Rohbeck, N.; Ramachandramoorthy, R.; Casari, D.; Schürch, P.; Edwards, T.E.; Schilinsky, L.; Philippe, L.; Schwiedrzik, J.; Michler, J. Effect of high strain rates and temperature on the micromechanical properties of 3D-printed polymer structures made by two-photon lithography. Mater. Des. 2020, 195, 108977. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, S.; Shao, X. Shear modulus of ionomer interlayer: Effects of time, temperature and strain rate. Constr. Build. Mater. 2021, 302, 124224. [Google Scholar] [CrossRef]
- Dorléans, V.; Delille, R.; Notta-Cuvier, D.; Lauro, F.; Michau, E. Time-temperature superposition in viscoelasticity and viscoplasticity for thermoplastics. Polym. Test. 2021, 101, 107287. [Google Scholar] [CrossRef]
- Trivedia, A.; Siviour, C. A novel modelling framework to predict the high rate response of soft materials: Application to (plasticised) poly (vinyl chloride). Mech. Time-Depend. Mater. 2020. [Google Scholar] [CrossRef]
- Karimzadeh, A.; Ayatollahi, M.R.; Rahimian Koloor, S.S.; Bushroa, A.R.; Yahya, M.Y.; Tamin, M.N. Assessment of compressive mechanical behavior of Bis-GMA polymer using hyperelastic models. Polymers 2019, 11, 1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Kim, Y.; Ryu, S.; Gu, G.X. Prediction of composite microstructure stress-strain curves using convolutional neural networks. Mater. Des. 2020, 189, 108509. [Google Scholar] [CrossRef]
- Reyes, G.; Sharma, U. Modeling and damage repair of woven thermoplastic composites subjected to low velocity impact. Compos. Struct. 2010, 92, 523–531. [Google Scholar] [CrossRef]
- Kim, E.-H.; Rim, M.-S.; Lee, I.; Hwang, T.-K. Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates. Compos. Struct. 2013, 95, 123–134. [Google Scholar] [CrossRef]
- Rahimian Koloor, S.S.; Karimzadeh, A.; Yidris, N.; Petrů, M.; Ayatollahi, M.R.; Tamin, M.N. An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model. Polymers 2020, 12, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ree, T.; Eyring, H. Theory of non-newtonian flow. I. solid plastic system. J. Appl. Phys. 1955, 26, 793–800. [Google Scholar] [CrossRef]
- Verbeeten, W.M.; Lorenzo-Bañuelos, M.; Arribas-Subiñas, P.J. Anisotropic rate-dependent mechanical behavior of poly (lactic acid) processed by material extrusion additive manufacturing. Addit. Manuf. 2020, 31, 100968. [Google Scholar] [CrossRef]
- Bašić, M. An Overview of Numerical Methods for Non-Newtonian Flows; University of Split: Split, Croatia, 2021. [Google Scholar]
- Zhang, D.; Fei, Q.; Zhang, P. Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor. Compos. Struct. 2017, 168, 633–645. [Google Scholar] [CrossRef]
- Koloor, S.; Ayatollahi, M.; Tamin, M. Elastic-damage deformation response of fiber-reinforced polymer composite laminates with lamina interfaces. J. Reinf. Plast. Compos. 2017, 36, 832–849. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, J.; Song, S.; Yang, D.; Wang, C. Effect of temperature on material properties of carbon fiber reinforced polymer (CFRP) tendons: Experiments and model assessment. Materials 2019, 12, 1025. [Google Scholar] [CrossRef] [Green Version]
- Abtew, M.A.; Boussu, F.; Bruniaux, P.; Loghin, C.; Cristian, I. Ballistic impact mechanisms–a review on textiles and fibre-reinforced composites impact responses. Compos. Struct. 2019, 223, 110966. [Google Scholar] [CrossRef]
- Vassilopoulos, A.P. The history of fiber-reinforced polymer composite laminate fatigue. Int. J. Fatigue 2020, 134, 105512. [Google Scholar] [CrossRef]
- Koloor, S.; Khosravani, M.R.; Hamzah, R.; Tamin, M. FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes. Int. J. Mech. Sci. 2018, 141, 223–235. [Google Scholar] [CrossRef]
- Johar, M.; Wong, K.; Rashidi, S.; Tamin, M. Effect of strain-rate and moisture content on the mechanical properties of adhesively bonded joints. J. Mech. Sci. Technol. 2020, 34, 1837–1845. [Google Scholar] [CrossRef]
- Thomas, R.J.; Sorensen, A.D. Review of strain rate effects for UHPC in tension. Constr. Build. Mater. 2017, 153, 846–856. [Google Scholar] [CrossRef]
- Mulliken, A.; Boyce, M. Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates. Int. J. Solids Struct. 2006, 43, 1331–1356. [Google Scholar] [CrossRef] [Green Version]
- Abed, F.; Mehaini, Z.; Oucif, C.; Abdul–Latif, A.; Baleh, R. Quasi-static and dynamic response of GFRP and BFRP bars under compression. Compos. Part C Open Access 2020, 2, 100034. [Google Scholar] [CrossRef]
- Yang, H.; Lei, H.; Lu, G.; Zhang, Z.; Li, X.; Liu, Y. Energy absorption and failure pattern of hybrid composite tubes under quasi-static axial compression. Compos. Part B Eng. 2020, 198, 108217. [Google Scholar] [CrossRef]
- Farhood, N.H.; Abdul-Lateef, W.E.; Sultan, K.F. Quasi-Static Indentation Behaviour of Carbon-Basalt Hybrid Cylindrical Composites. J. Mech. Eng. Res. Dev. 2021, 44, 189–197. [Google Scholar]
- Sebaey, T.A. Experimental Investigation into Quasi-Static Crushing of CFRP Composite Cylindrical Tubes after Thermal Aging. In Proceedings of the 10th World Congress on Mechanical, Chemical, and Material Engineering (MCM’21), Virtual, 31 July–2 August 2021. [Google Scholar]
- Bai, Y.-L.; Yan, Z.-W.; Ozbakkaloglu, T.; Han, Q.; Dai, J.-G.; Zhu, D.-J. Quasi-static and dynamic tensile properties of large-rupture-strain (LRS) polyethylene terephthalate fiber bundle. Constr. Build. Mater. 2020, 232, 117241. [Google Scholar] [CrossRef]
- Amorim, L.; Santos, A.; Nunes, J.; Dias, G.; Viana, J. Quasi static mechanical study of vacuum bag infused bouligand inspired composites. Polym. Test. 2021, 100, 107261. [Google Scholar] [CrossRef]
- Yang, H.; Lei, H.; Lu, G. Crashworthiness of circular fiber reinforced plastic tubes filled with composite skeletons/aluminum foam under drop-weight impact loading. Thin-Walled Struct. 2021, 160, 107380. [Google Scholar] [CrossRef]
- Gupta, A.K.; Velmurugan, R.; Joshi, M. Mechanical characterization of pseudoelastic shape memory alloy hybrid composites. ISSS J. Micro Smart Syst. 2017, 6, 149–160. [Google Scholar] [CrossRef]
- Pitarresi, G.; Scalici, T.; Dellaira, M.; Catalanotti, G. A methodology for the rapid characterization of Mode II delamination fatigue threshold in FRP composites. Eng. Fract. Mech. 2019, 220, 106629. [Google Scholar] [CrossRef]
- Xie, H.; Fang, H.; Li, X.; Wan, L.; Wu, P.; Yu, Y. Low-velocity impact damage detection and characterization in composite sandwich panels using infrared thermography. Compos. Struct. 2021, 269, 114008. [Google Scholar] [CrossRef]
- Viot, P.; Beani, F.; Lataillade, J.-L. Polymeric foam behavior under dynamic compressive loading. J. Mater. Sci. 2005, 40, 5829–5837. [Google Scholar] [CrossRef]
- Al-Maliky, N.; Parry, D. A freely expanding ring technique for measuring the tensile properties of polymers. Meas. Sci. Technol. 1996, 7, 746. [Google Scholar] [CrossRef]
- Siviour, C.R. High strain rate characterization of polymers. AIP Conf. Proc. 2017, 1793, 060029. [Google Scholar]
- Chaurasia, A.; Mulik, R.S.; Parashar, A. Polymer-based nanocomposites for impact loading: A review. Mech. Adv. Mater. Struct. 2021, 1–26. [Google Scholar] [CrossRef]
- Singh, K.K. In-Plane Low Velocity Impact Behavior of GFRP Laminate. Mater. Sci. Forum 2020, 978, 257–263. [Google Scholar]
- Chellamuthu, K.; Vasanthanathan, A. Experimental investigation of fibre reinforced plastics (frp) structure with coconut husk under low velocity impact. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Mubin, S.; Syamsir, A.; Mohamad, D. A Review on experimental and numerical studies of Glass Fibre Reinforced Polymer (GFRP) strips strengthened Reinforced Concrete (RC) slab subjected to low velocity impact. IOP Conf. Ser. Earth Environ. Sci. 2021, 708, 012075. [Google Scholar] [CrossRef]
- Rawat, P.; Singh, N.K.; Singh, K.K.; Kumar, A. Experimental and Numerical Approach to Investigate Damage Tolerance in FRP Composites Subjected to Transverse Low-Velocity Impact. Res. Dev. Mater. Sci. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Patnaik, G.; Kaushik, A.; Rajput, A.; Prakash, G.; Velmurugan, R. Ballistic performance of quasi-isotropic CFRP laminates under low velocity impact. J. Compos. Mater. 2021. [Google Scholar] [CrossRef]
- Tirillò, J.; Ferrante, L.; Sarasini, F.; Lampani, L.; Barbero, E.; Sánchez-Sáez, S.; Valente, T.; Gaudenzi, P. High velocity impact behaviour of hybrid basalt-carbon/epoxy composites. Compos. Struct. 2017, 168, 305–312. [Google Scholar] [CrossRef]
- ASTM International. D7136/D7136M Standard Test. Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event; ASTM D7136/D7136M Janvier 2015; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Shah, S.; Karuppanan, S.; Megat-Yusoff, P.; Sajid, Z. Impact resistance and damage tolerance of fiber reinforced composites: A review. Compos. Struct. 2019, 217, 100–121. [Google Scholar] [CrossRef]
- Asija, N.; Chouhan, H.; Gebremeskel, S.A.; Bhatnagar, N. High strain rate characterization of shear thickening fluids using Split Hopkinson Pressure Bar technique. Int. J. Impact Eng. 2017, 110, 365–370. [Google Scholar] [CrossRef]
- Xie, Z.; Duan, Z.; Guo, Y.; Li, X.; Zeng, J. Behavior of fiber-reinforced polymer-confined high-strength concrete under Split-Hopkinson Pressure Bar (SHPB) impact compression. Appl. Sci. 2019, 9, 2830. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.-Y.; Kim, D.-H.; Kim, D.-H.; Kim, H.-S. Design and Fabrication of Split Hopkinson Pressure Bar for Dynamic Mechanical Properties of Self-reinforced Polypropylene Composite. Compos. Res. 2018, 31, 221–226. [Google Scholar]
- Guo, Y.-C.; Xiao, S.-H.; Zeng, J.-J.; Zheng, Y.; Li, X.; Liu, F. Fiber reinforced polymer-confined concrete under high strain rate compression: Behavior and a unified dynamic strength model. Constr. Build. Mater. 2020, 260, 120460. [Google Scholar] [CrossRef]
- Bassiri Nia, A.; Xin, L.; Yahya, M.Y.; Ayob, A.; Farokhi Nejad, A.; Rahimian Koloor, S.S.; Petrů, M. Failure of glass fibre-reinforced polypropylene metal laminate subjected to close-range explosion. Polymers 2020, 12, 2139. [Google Scholar] [CrossRef] [PubMed]
- Al-Hajaj, Z.; Sy, B.L.; Bougherara, H.; Zdero, R. Impact properties of a new hybrid composite material made from woven carbon fibres plus flax fibres in an epoxy matrix. Compos. Struct. 2019, 208, 346–356. [Google Scholar] [CrossRef]
- Huo, X.; Sun, G.; Zhang, H.; Lv, X.; Li, Q. Experimental study on low-velocity impact responses and residual properties of composite sandwiches with metallic foam core. Compos. Struct. 2019, 223, 110835. [Google Scholar] [CrossRef]
- Koloor, S.; Abdul-Latif, A.; Tamin, M.N. Mechanics of composite delamination under flexural loading. Key Eng. Mater. 2011, 462–463, 726–731. [Google Scholar] [CrossRef]
- Di Boon, Y.; Joshi, S.C. A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites. Mater. Today Commun. 2020, 22, 100830. [Google Scholar] [CrossRef]
- Gilat, A.; Goldberg, R.K.; Roberts, G.D. Experimental study of strain-rate-dependent behavior of carbon/epoxy composite. Compos. Sci. Technol. 2002, 62, 1469–1476. [Google Scholar] [CrossRef]
- Koerber, H.; Kuhn, P.; Ploeckl, M.; Otero, F.; Gerbaud, P.-W.; Rolfes, R.; Camanho, P.P. Experimental characterization and constitutive modeling of the non-linear stress-strain behavior of unidirectional carbon-epoxy under high strain rate loading. Adv. Model. Simul. Eng. Sci. 2018, 5, 1–24. [Google Scholar] [CrossRef]
- Chihi, M.; Tarfaoui, M.; Qureshi, Y.; Bouraoui, C.; Benyahia, H. Effect of carbon nanotubes on the in-plane dynamic behavior of a carbon/epoxy composite under high strain rate compression using SHPB. Smart Mater. Struct. 2020, 29, 085012. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Omidi, M.J. Compressive response of glass-fiber reinforced polymeric composites to increasing compressive strain rates. Compos. Struct. 2009, 89, 517–523. [Google Scholar] [CrossRef]
- Peterson, B.L.; Pangborn, R.N.; Pantano, C.G. Static and high strain rate response of a glass fiber reinforced thermoplastic. J. Compos. Mater. 1991, 25, 887–906. [Google Scholar] [CrossRef]
- Chen, W.; Meng, Q.; Hao, H.; Cui, J.; Shi, Y. Quasi-static and dynamic tensile properties of fiberglass/epoxy laminate sheet. Constr. Build. Mater. 2017, 143, 247–258. [Google Scholar] [CrossRef]
- El-Habak, A. Mechanical behaviour of woven glass fibre-reinforced composites under impact compression load. Composites 1991, 22, 129–134. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Omidi, M.J. Investigating the transverse behavior of Glass–Epoxy composites under intermediate strain rates. Compos. Struct. 2011, 93, 690–696. [Google Scholar] [CrossRef]
- Ray, B. Effects of crosshead velocity and sub-zero temperature on mechanical behaviour of hygrothermally conditioned glass fibre reinforced epoxy composites. Mater. Sci. Eng. A 2004, 379, 39–44. [Google Scholar] [CrossRef]
- Khan, M.S.; Simpson, G.; Gellert, E. Resistance of glass-fibre reinforced polymer composites to increasing compressive strain rates and loading rates. Compos. Part A Appl. Sci. Manuf. 2000, 31, 57–67. [Google Scholar] [CrossRef]
- Singh, M.M.; Kumar, H.; Kumar, G.H.; Sivaiah, P.; Nagesha, K.; Ajay, K.; Vijaya, G. Determination of strength parameters of glass fibers reinforced composites for engineering applications. Silicon 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Jefferson, A.J.; Srinivasan, S.M.; Arockiarajan, A. Effect of multiphase fiber system and stacking sequence on low-velocity impact and residual tensile behavior of glass/epoxy composite laminates. Polym. Compos. 2019, 40, 1450–1462. [Google Scholar] [CrossRef]
- Kharazi, A.Z.; Fathi, M.H.; Manshaei, M.; Razavi, S.M. In-vivo evaluation of a partially resorbable poly l-lactic acid/braided bioactive glass fibers reinforced composite for load bearing fracture fixation. J. Mater. Sci. Mater. Med. 2020, 31, 1–9. [Google Scholar]
- Woldesenbet, E.; Vinson, J.R. Specimen geometry effects on high-strain-rate testing of graphite/epoxy composites. AIAA J. 1999, 37, 1102–1106. [Google Scholar] [CrossRef]
- Hall, I.W.; Güden, M. High strain rate testing of a unidirectionally reinforced graphite epoxy composite. J. Mater. Sci. Lett. 2001, 20, 897–899. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.; Jones, R.; Callinan, R. Damage tolerance of graphite/epoxy composites. Compos. Struct. 1985, 4, 15–44. [Google Scholar] [CrossRef]
- Gillespie, J., Jr.; Carlsson, L.A.; Smiley, A.J. Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite/PEEK. Compos. Sci. Technol. 1987, 28, 1–15. [Google Scholar] [CrossRef]
- Welsh, L.; Harding, J. Effect of strain rate on the tensile failure of woven reinforced polyester resin composites. J. Phys. Colloq. 1985, 46, C5-405–C5-414. [Google Scholar] [CrossRef] [Green Version]
- Ray, B. Freeze-Thaw response of glass-Polyester composites at different loading rates. J. Reinf. Plast. Compos. 2005, 24, 1771–1776. [Google Scholar] [CrossRef]
- Cazeneuve, C.; Maile, J. Study of the behaviour of carbon fibre composites under different deformation rates. J. Phys. Colloq. 2021, C5, 551–556. [Google Scholar]
- Quanjin, M.; Sahat, I.M.; Mat Rejab, M.R.; Abu Hassan, S.; Zhang, B.; Merzuki, M.N. The energy-absorbing characteristics of filament wound hybrid carbon fiber-reinforced plastic/polylactic acid tubes with different infill pattern structures. J. Reinf. Plast. Compos. 2019, 38, 1067–1088. [Google Scholar] [CrossRef]
- Mamalis, A.G.; Manolakos, D.; Ioannidis, M.; Papapostolou, D. Crashworthy characteristics of axially statically compressed thin-walled square CFRP composite tubes: Experimental. Compos. Struct. 2004, 63, 347–360. [Google Scholar] [CrossRef]
- Vural, M.; Ravichandran, G. Transverse failure in thick S2-glass/epoxy fiber-reinforced composites. J. Compos. Mater. 2004, 38, 609–623. [Google Scholar] [CrossRef]
- Bobba, S.; Leman, Z.; Zainuddin, E.; Sapuan, S. Impact and internal pressure failure of E-glass and S-glass epoxy composite elbow pipe joints influenced by sea water. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2021, 235, 116–123. [Google Scholar] [CrossRef]
- Gao, S.-L.; Kim, J.-K. Cooling rate influences in carbon fibre/PEEK composites. Part III: Impact damage performance. Compos. Part A Appl. Sci. Manuf. 2001, 32, 775–785. [Google Scholar] [CrossRef]
- Striewe, J.; Reuter, C.; Sauerland, K.-H.; Tröster, T. Manufacturing and crashworthiness of fabric-reinforced thermoplastic composites. Thin-Walled Struct. 2018, 123, 501–508. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, Y.; Chen, L.; Pan, N. A comparative study on low-velocity impact response of fabric composite laminates. Mater. Des. 2013, 50, 750–756. [Google Scholar] [CrossRef]
- Randjbaran, E.; Zahari, R.; Abdul Jalil, N.A.; Abang Abdul Majid, D.L. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef]
- Thanomsilp, C.; Hogg, P. Penetration impact resistance of hybrid composites based on commingled yarn fabrics. Compos. Sci. Technol. 2003, 63, 467–482. [Google Scholar] [CrossRef]
- Bakkal, M.; Savas, M. Development of natural fiber reinforced laminated hybrid composites. Adv. Mater. Res. 2012, 628, 15–20. [Google Scholar] [CrossRef]
- Hameed, A.M.; Daway, E.G. Mechanism of hybrid reinforcement and its effect on some properties of binary polymer blend. Eng. Technol. J. 2014, 32, 287–301. [Google Scholar]
- Yan, R.; Wang, R.; Lou, C.-W.; Lin, J.-H. Low-velocity impact and static behaviors of high-resilience thermal-bonding inter/intra-ply hybrid composites. Compos. Part B Eng. 2015, 69, 58–68. [Google Scholar] [CrossRef]
- Yahaya, R.; Sapuan, S.; Jawaid, M.; Leman, Z.; Zainudin, E. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites. Mater. Des. 2015, 67, 173–179. [Google Scholar] [CrossRef]
- Petrucci, R.; Santulli, C.; Puglia, D.; Nisini, E.; Sarasini, F.; Tirillò, J.; Torre, L.; Minak, G.; Kenny, J. Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Compos. Part B Eng. 2015, 69, 507–515. [Google Scholar] [CrossRef]
- Muñoz, R.; Martínez-Hergueta, F.; Gálvez, F.; González, C.; LLorca, J. Ballistic performance of hybrid 3D woven composites: Experiments and simulations. Compos. Struct. 2015, 127, 141–151. [Google Scholar] [CrossRef]
- Pandya, K.S.; Pothnis, J.R.; Ravikumar, G.; Naik, N. Ballistic impact behavior of hybrid composites. Mater. Des. 2013, 44, 128–135. [Google Scholar] [CrossRef]
- Muhammad, Y.H.; Ahmad, S.; Abu Bakar, M.A.; Mamun, A.A.; Heim, H.P. Mechanical properties of hybrid glass/kenaf fibre-reinforced epoxy composite with matrix modification using liquid epoxidised natural rubber. J. Reinf. Plast. Compos. 2015, 34, 896–906. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillò, J.; Ferrante, L.; Valente, M.; Valente, T.; Lampani, L.; Gaudenzi, P.; Cioffi, S.; Iannace, S.; Sorrentino, L. Drop-weight impact behaviour of woven hybrid basalt–carbon/epoxy composites. Compos. Part B Eng. 2014, 59, 204–220. [Google Scholar] [CrossRef]
- Flynn, J.; Amiri, A.; Ulven, C. Hybridized carbon and flax fiber composites for tailored performance. Mater. Des. 2016, 102, 21–29. [Google Scholar] [CrossRef]
- Bandaru, A.K.; Patel, S.; Sachan, Y.; Alagirusamy, R.; Bhatnagar, N.; Ahmad, S. Low velocity impact response of 3D angle-interlock Kevlar/basalt reinforced polypropylene composites. Mater. Des. 2016, 105, 323–332. [Google Scholar] [CrossRef]
- Özben, T. Impact behavior of hybrid composite plates dependent on curing and different stacking sequences. Mater. Test. 2016, 58, 442–447. [Google Scholar] [CrossRef]
- Manjunath, V.; Udupa, S. A study on hybrid composite using areca and eucalyptus fiber by using epoxy resin. J. Mech. Ind. Eng. Res. 2016, 1, 1–2. [Google Scholar]
- Živković, I.; Fragassa, C.; Pavlović, A.; Brugo, T. Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Compos. Part B Eng. 2017, 111, 148–164. [Google Scholar] [CrossRef]
- Joshani, M.; Koloor, S.; Abdullah, R. Damage Mechanics Model for Fracture Process of Steel-concrete Composite Slabs. Appl. Mech. Mater. 2012, 165, 339–345. [Google Scholar] [CrossRef]
- Ng, T.P.; Koloor, S.; Djuansjah, J.; Kadir, M.A. Assessment of compressive failure process of cortical bone materials using damage-based model. J. Mech. Behav. Biomed. Mater. 2017, 66, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rahimian Koloor, S.S.; Karimzadeh, A.; Tamin, M.N.; Abd Shukor, M.H. Effects of sample and indenter configurations of nanoindentation experiment on the mechanical behavior and properties of ductile materials. Metals 2018, 8, 421. [Google Scholar] [CrossRef] [Green Version]
- Nia, A.B.; Nejad, A.F.; Xin, L.; Ayob, A.; Yahya, M.Y. Energy absorption assessment of conical composite structures subjected to quasi-static loading through optimization based method. Mech. Ind. 2020, 21, 113. [Google Scholar] [CrossRef] [Green Version]
- Tsai, S.W.; Wu, E.M. A general theory of strength for anisotropic materials. J. Compos. Mater. 1971, 5, 58–80. [Google Scholar] [CrossRef]
- Tsai, S.W. Strength Characteristics of Composite Materials; Philco Corp.: Newport Beach, CA, USA, 1965. [Google Scholar]
- Azzi, V.; Tsai, S. Anisotropic strength of composites. Exp. Mech. 1965, 5, 283–288. [Google Scholar] [CrossRef]
- Chamis, C. Failure criteria for filamentary composites. In Composite Materials: Testing and Design; ASTM International: West Conshohocken, PA, USA, 1969. [Google Scholar]
- Hoffman, O. The brittle strength of orthotropic materials. J. Compos. Mater. 1967, 1, 200–206. [Google Scholar] [CrossRef]
- Tessler, A.; DiSciuva, M.; Gherlone, M. Refined Zigzag Theory for Laminated Composite and Sandwich Plates; NASA: Washington, DC, USA, 2009.
- Foulk, J.; Allen, D.; Helms, K. Formulation of a three-dimensional cohesive zone model for application to a finite element algorithm. Comput. Methods Appl. Mech. Eng. 2000, 183, 51–66. [Google Scholar] [CrossRef]
- Hashin, Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980, 47, 329–334. [Google Scholar] [CrossRef]
- Hashin, Z.; Rotem, A. A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 1973, 7, 448–464. [Google Scholar] [CrossRef] [Green Version]
- Bonora, N.; Esposito, L. Mechanism based creep model incorporating damage. J. Eng. Mater. Technol. 2010, 132, 021013. [Google Scholar] [CrossRef]
- Cowper, G.R.; Symonds, P.S. Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams; Brown University: Providence, RI, USA, 1957. [Google Scholar]
- Yen, C.-F. Ballistic impact modeling of composite materials. In Proceedings of the 7th International LS-DYNA Users Conference, Dearborn, MI, USA, 12–14 June 2016; pp. 15–23. [Google Scholar]
- De Luca, A.; Di Caprio, F.; Milella, E.; Lamanna, G.; Ignarra, M.; Caputo, F. On the tensile behaviour of CF and CFRP materials under high strain rates. Key Eng. Mater. 2017, 754, 111–114. [Google Scholar] [CrossRef]
- Daniel, I.M. Yield and failure criteria for composite materials under static and dynamic loading. Prog. Aerosp. Sci. 2016, 81, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Whisler, D.; Kim, H. Effect of impactor radius on low-velocity impact damage of glass/epoxy composites. J. Compos. Mater. 2012, 46, 3137–3149. [Google Scholar] [CrossRef]
- Ansari, M.M.; Chakrabarti, A. Impact behavior of FRP composite plate under low to hyper velocity impact. Compos. Part B Eng. 2016, 95, 462–474. [Google Scholar] [CrossRef]
- Panettieri, E.; Fanteria, D.; Montemurro, M.; Froustey, C. Low-velocity impact tests on carbon/epoxy composite laminates: A benchmark study. Compos. Part B Eng. 2016, 107, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Topac, O.T.; Gozluklu, B.; Gurses, E.; Coker, D. Experimental and computational study of the damage process in CFRP composite beams under low-velocity impact. Compos. Part A Appl. Sci. Manuf. 2017, 92, 167–182. [Google Scholar] [CrossRef]
- Nalla Mohamed, M.; Ananthapadmanaban, D.; Selvaraj, M. Numerical Modeling of Energy Absorption Behaviour of Aluminium Foam Cored Sandwich Panels with Different Fibre Reinforced Polymer (FRP) Composite Facesheet Skins. Appl. Mech. Mater. 2016, 852, 66–71. [Google Scholar] [CrossRef]
- Žmindák, M.; Pelagić, Z.; Pastorek, P.; Močilan, M.; Vybošťok, M. Finite element modelling of high velocity impact on plate structures. Procedia Eng. 2016, 136, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Hussain, N.N.; Regalla, S.P.; Rao, Y.V.D. Low velocity impact characterization of glass fiber reinforced plastics for application of crash box. Mater. Today Proc. 2017, 4, 3252–3262. [Google Scholar] [CrossRef]
- Bandaru, A.K.; Chavan, V.V.; Ahmad, S.; Alagirusamy, R.; Bhatnagar, N. Ballistic impact response of Kevlar® reinforced thermoplastic composite armors. Int. J. Impact Eng. 2016, 89, 1–13. [Google Scholar] [CrossRef]
- De Rosa, I.M.; Santulli, C.; Sarasini, F. Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater. Des. (1980–2015) 2010, 31, 2397–2405. [Google Scholar] [CrossRef]
- Pelfrene, J.; Kuntsche, J.; Van Dam, S.; Van Paepegem, W.; Schneider, J. Critical assessment of the post-breakage performance of blast loaded laminated glazing: Experiments and simulations. Int. J. Impact Eng. 2016, 88, 61–71. [Google Scholar] [CrossRef]
- Duser, A.V.; Jagota, A.; Bennison, S.J. Analysis of glass/polyvinyl butyral laminates subjected to uniform pressure. J. Eng. Mech. 1999, 125, 435–442. [Google Scholar] [CrossRef]
- Hidallana-Gamage, H.D.; Thambiratnam, D.; Perera, N. Influence of interlayer properties on the blast performance of laminated glass panels. Constr. Build. Mater. 2015, 98, 502–518. [Google Scholar] [CrossRef]
- Xu, C.; Yuan, Y.; Zhao, C.; Tan, P.; Xu, X.; Li, Y. Dynamic crack-interface interactions in SGP laminated glass: An experimental investigation. Mech. Mater. 2018, 122, 76–84. [Google Scholar] [CrossRef] [Green Version]
Materials | Loading Type | Fracture Mode | Reference |
---|---|---|---|
CFRP/epoxy | Low/High-impact load | Mode II, deboning, delamination | [87,158,159,160] |
GFRP/epoxy | Quasi-static | progressive damage | [161,162,163,164,165,166] |
GFRP/epoxy | Low-impact load | matrix cracking, Mode II, debonding | [167,168,169,170] |
Graphite/epoxy | Ballistic load | fiber breakage, tulip damage, back face sheet | [171,172,173,174] |
GFRP/polyester | Quasi-static | fiber breakage, progressive damage | [175,176] |
CFRP/epoxy | Quasi-static | progressive damage, fiber and matrix deboning | [177,178,179] |
S2 GFRP/epoxy | Quasi-static | progressive damage | [180,181] |
CFRP/PEEK | High-impact load | tulip damage, back face sheet pealing, tulip mode | [182] |
PPS/GFRP | Low-impact load | fiber breakage, global deformation, Mode II | [112] |
GFRP/ Polyamide | Quasi-static | fiber and matrix deboning, fiber breakage | [183] |
GFRP/ Polyethylene | Quasi-static | fiber and matrix deboning, Mode II | [184] |
Materials | Loading Type | Reference |
---|---|---|
Kevlar/CFRP/GFRP | High-impact load | [181,185] |
Glass-Polypropylene, Glass-Nylon fiber | Low-impact load | [186] |
Cotton-Glass fiber | Low-impact load | [187] |
Glass-Carbon fiber | Low-impact load | [188] |
Kevlar-Glass fiber | Low-impact load | [189] |
Kenaf-Kevlar fiber | Low-impact load | [190] |
Glass-Hemp-Basalt-Flax fiber | High-impact load | [191] |
Glass-Carbon fiber | High-impact load | [192,193] |
Glass-Kenaf fiber | Low-impact load | [194] |
Kevlar-Kenaf fiber | High-impact load | [21] |
Basalt-Carbon fiber | Low-impact load | [195] |
Carbon-Basalt fiber | High-impact load | [146] |
Glass-Kenaf fiber | Low-impact load | [79] |
Carbon-Flax fiber | Low-impact load | [196] |
Kevlar-Basalt fiber | Low-impact load | [197] |
Glass-Carbon fiber | Low-impact load | [198] |
Areca-Eucalyptus fiber | Low-impact load | [199] |
Flax-Basalt fiber | Low-impact load | [200] |
Author | Criteria | Year | Strain Rate | Reference |
---|---|---|---|---|
Tsai and Wu | Tsai-Wu | 1971 | Rate-independent | [205] |
Tsai-Hill | Tsai-Hill | 1998 | Rate-independent | [206] |
Aziz-Tsai | Aziz-Tsai | 1965 | Rate-independent | [207] |
Hoffman and Chamois | Hoffman-Chamois | 1969 | Rate-independent | [208,209] |
Tessler, A | Zigzag theory | 2009 | Rate-independent | [210] |
Foulk, J. W. | Cohesive zone model | 2000 | Rate-independent | [211] |
Hashin | Hashine damage | 1973–1980 | Low strain rate | [212,213] |
Esposito L | Delamination failure | 2010 | Low strain rate | [214] |
Cowper-Symonds | Cowper-Symonds | 1957 | Low strain rate | [215] |
Yen-Caiazzo | Yen-Caiazzo | 2002 | High strain rate | [216] |
De Luca et al. | High strain rate damage model | 2017 | High strain rate | [217] |
NU-Daniel | Dynamic loading yield criteria | 2016 | High strain rate | [218] |
Material Type | Modeling Method | Objective of Analysis | Strain Rate | Reference |
---|---|---|---|---|
GFRP/epoxy | analytical | Failure analysis | Low strain rate | [219,220] |
CFRP/epoxy | FE | Damage evaluation | Low strain rate | [221,222] |
Graphite/epoxy | FE | Damage evaluation | Low strain rate | [113] |
Carbon/glass/Kevlar/epoxy | FE | Dynamic response | High strain rate | [223] |
CFRP/PEEK/epoxy | FE | Damage evaluation | High strain rate | [224] |
GFRP/epoxy | FE | Damage evaluation | High strain rate | [225] |
Kevlar/polypropylene | FE | Dynamic response | High strain rate | [226] |
GFRP/polyester | analytical | Global deformation | Low strain rate | [227] |
FRP laminate | analytical | Stress intensity factor | Low strain rate | [175,176] |
GFRP laminate | analytical | Mechanical properties | Low strain rate | [161,162,163,164,165,166] |
Glass laminate | analytical | Blast analysis | High strain rate | [159,160] |
Polyvinyl butyral/glass | FE | Dynamic response | Low strain rate | [228,229] |
GFRP laminate | FE | Blast Failure analysis | High strain rate | [230] |
GFRP laminate | FE | Crack propagation | High strain rate | [231] |
FRP composites | analytical | Failure criteria | High strain rate | [210,212] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farokhi Nejad, A.; Bin Salim, M.Y.; Rahimian Koloor, S.S.; Petrik, S.; Yahya, M.Y.; Abu Hassan, S.; Mohd Shah, M.K. Hybrid and Synthetic FRP Composites under Different Strain Rates: A Review. Polymers 2021, 13, 3400. https://doi.org/10.3390/polym13193400
Farokhi Nejad A, Bin Salim MY, Rahimian Koloor SS, Petrik S, Yahya MY, Abu Hassan S, Mohd Shah MK. Hybrid and Synthetic FRP Composites under Different Strain Rates: A Review. Polymers. 2021; 13(19):3400. https://doi.org/10.3390/polym13193400
Chicago/Turabian StyleFarokhi Nejad, Ali, Mohamad Yusuf Bin Salim, Seyed Saeid Rahimian Koloor, Stanislav Petrik, Mohd Yazid Yahya, Shukur Abu Hassan, and Mohd Kamal Mohd Shah. 2021. "Hybrid and Synthetic FRP Composites under Different Strain Rates: A Review" Polymers 13, no. 19: 3400. https://doi.org/10.3390/polym13193400
APA StyleFarokhi Nejad, A., Bin Salim, M. Y., Rahimian Koloor, S. S., Petrik, S., Yahya, M. Y., Abu Hassan, S., & Mohd Shah, M. K. (2021). Hybrid and Synthetic FRP Composites under Different Strain Rates: A Review. Polymers, 13(19), 3400. https://doi.org/10.3390/polym13193400