Water-Resistant Surface Modification of Hydrophobic Polymers with Water-Soluble Surfactant Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Neutron Reflectometry
2.3. Nuclear Reaction Analysis
2.4. Atomic Force Microscopy
2.5. Water Contact Angle Analysis
3. Results
3.1. Additive Segregation
3.2. The Effect of Temperature Elevation on the Surface Excess
3.3. Water Exposure Effects on the Surface Excess
3.4. Water Contact Angle Analysis
3.5. Surface Structure Change after Water Exposure
4. Discussion
4.1. Surfactant Blooming
4.2. Surface Structures
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolf, S.; Plenio, H. On the Ethenolysis of Natural Rubber and Squalene. Green Chem. 2011, 13, 2008–2012. [Google Scholar] [CrossRef]
- Chan, C.H.; Joy, J.; Maria, H.J.; Thomas, S. Chapter 1. Natural Rubber-Based Composites and Nanocomposites: State of the Art, New Challenges and Opportunities. In Natural Rubber Materials: Volume 2: Composites and Nanocomposites; Thomas, S., Chan, C.H., Pothen, L., Joy, J., Maria, H., Eds.; The Royal Society of Chemistry: London, UK, 2013. [Google Scholar]
- Johnsen, K.; Kirkhorn, S.; Olafsen, K.; Redford, K.; Stori, A. Modification of Polyolefin Surfaces by Plasma-Induced Grafting. J. Appl. Polym. Sci. 1996, 59, 1651–1657. [Google Scholar] [CrossRef]
- Friedrich, J.; Wettmarshausen, S.; Hennecke, M. Haloform Plasma Modification of Polyolefin Surfaces. Surf. Coat. Technol. 2009, 203, 3647–3655. [Google Scholar] [CrossRef]
- Chan, C.M.; Ko, T.M.; Hiraoka, H. Polymer Surface Modification by Plasmas and Photons. Surf. Sci. Rep. 1996, 24, 1–54. [Google Scholar] [CrossRef]
- Mathieson, I.; Bradley, R.H. Improved Adhesion to Polymers by UV/Ozone Surface Oxidation. Int. J. Adhes. Adhes. 1996, 16, 29–31. [Google Scholar] [CrossRef]
- Bongiovanni, R.; di Gianni, A.; Priola, A.; Pollicino, A. Surface Modification of Polyethylene for Improving the Adhesion of a Highly Fluorinated UV-Cured Coating. Eur. Polym. J. 2007, 43, 3787–3794. [Google Scholar] [CrossRef]
- Nemani, S.K.; Annavarapu, R.K.; Mohammadian, B.; Raiyan, A.; Heil, J.; Haque, M.A.; Abdelaal, A.; Sojoudi, H. Surface Modification of Polymers: Methods and Applications. Adv. Mater. Interfaces 2018, 5, 1801247. [Google Scholar] [CrossRef]
- Koberstein, J.T. Molecular Design of Functional Polymer Surfaces. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 2942–2956. [Google Scholar] [CrossRef]
- Hariharan, A.; Kumar, S.K.; Russell, T.P. Surface Segregation in Binary Polymer Mixtures: A Lattice Model. Macromolecules 1991, 24, 4909–4917. [Google Scholar] [CrossRef]
- Kumar, S.K.; Vacatello, M.; Yoon, D.Y. Off-Lattice Monte Carlo Simulations of Polymer Melts Confined between Two Plates. J. Chem. Phys. 1988, 89, 5206–5215. [Google Scholar] [CrossRef]
- Hariharan, A.; Kumar, S.K.; Russell, T.P. Free Surfaces of Polymer Blends. II. Effects of Molecular Weight and Applications to Asymmetric Polymer Blends. J. Chem. Phys. 1993, 99, 4041. [Google Scholar] [CrossRef]
- Tanaka, K.; Takahara, A.; Kajiyama, T. Surface Molecular Aggregation Structure and Surface Molecular Motions of High-Molecular-Weight Polystyrene/Low-Molecular-Weight Poly(Methyl Methacrylate) Blend Films. Macromolecules 1998, 31, 863–869. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, X.; Rafailovich, M.H.; Sokolov, J.; Composto, R.J.; Smith, S.D.; Satkowski, M.; Russell, T.P.; Dozier, W.D.; Mansfield, T. Segregation of Chain Ends to Polymer Melt Surfaces and Interfaces. Macromolecules 1993, 26, 561–562. [Google Scholar] [CrossRef]
- Minnikanti, V.S.; Archer, L.A. Entropic Attraction of Polymers toward Surfaces and Its Relationship to Surface Tension. Macromolecules 2006, 39, 7718–7728. [Google Scholar] [CrossRef]
- Bitsanis, I.; Hadziioannou, G. Molecular Dynamics Simulations of the Structure and Dynamics of Confined Polymer Melts. J. Chem. Phys. 1990, 92, 3827. [Google Scholar] [CrossRef]
- Lee, H.; Archer, L.A. Functionalizing Polymer Surfaces by Field-Induced Migration of Copolymer Additives. 1. Role of Surface Energy Gradients. Macromolecules 2001, 34, 4572–4579. [Google Scholar] [CrossRef]
- Sabattié, E.F.D.; Tasche, J.; Wilson, M.R.; Skoda, M.W.A.; Hughes, A.; Lindner, T.; Thompson, R.L. Predicting Oligomer/Polymer Compatibility and the Impact on Nanoscale Segregation in Thin Films. Soft Matter 2017, 13, 3580–3591. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Hirt, D.E. Hydrophilization of Polypropylene Films by Using Migratory Additives. J. Vinyl Addit. Technol. 2007, 13, 57–64. [Google Scholar] [CrossRef]
- Lee, H.; Archer, L.A. Functionalizing Polymer Surfaces by Field-Induced Migration of Copolymer Additives—Role of Shear Fields. Polym. Eng. Sci. 2002, 42, 1568–1579. [Google Scholar] [CrossRef]
- David, M.O.; Nipithakul, T.; Nardin, M.; Schultz, J.; Suchiva, K. Influence of Nonrubber Constituents on Tack of Natural Rubber. I. At Very Short Times of Contact (Pendulum Test). J. Appl. Polym. Sci. 2000, 78, 1486–1494. [Google Scholar] [CrossRef]
- Datla, V.M.; Shim, E.; Pourdeyhimi, B. Polypropylene Surface Modification with Stearyl Alcohol Ethoxylates to Enhance Wettability. J. Appl. Polym. Sci. 2011, 121, 1335–1347. [Google Scholar] [CrossRef]
- Datla, V.M.; Shim, E.; Pourdeyhimi, B. Surface Modifications of Polypropylene with Nonylphenol Ethoxylates Melt Additives. Polym. Eng. Sci. 2012, 52, 1920–1927. [Google Scholar] [CrossRef]
- Zhu, S.; Welsh, N.; Hirt, D.E. Determination of the Diffusivity of a Hydrophilic Migratory Additive in IPP Films. J. Plast. Film Sheeting 2007, 23, 187–201. [Google Scholar] [CrossRef]
- Lu, J.R.; Hromadova, M.; Thomas, R.K.; Penfold, J. Neutron Reflection from Triethylene Glycol Monododecyl Ether Adsorbed at the Air-Liquid Interface: The Variation of the Hydrocarbon Chain Distribution with Surface Concentration. Langmuir 1993, 9, 2417–2425. [Google Scholar] [CrossRef]
- Thomas, R.K.; Penfold, J. Neutron and X-Ray Reflectometry of Interfacial Systems in Colloid and Polymer Chemistry. Curr. Opin. Colloid Interface Sci. 1996, 1, 23–33. [Google Scholar] [CrossRef]
- Penfold, J. Neutron Reflectivity and Soft Condensed Matter. Curr. Opin. Colloid Interface Sci. 2002, 7, 139–147. [Google Scholar] [CrossRef]
- Gilchrist, V.A.; Lu, J.R.; Staples, E.; Garrett, P.; Penfold, J. Adsorption of Pentaethylene Glycol Monododecyl Ether at the Planar Polymer/Water Interface Studied by Specular Neutron Reflection. Langmuir 1999, 15, 250–258. [Google Scholar] [CrossRef]
- Bucknall, D.G.; Higgins, J.S.; Butler, S.A. Early Stages of Oligomer–Polymer Diffusion. Chem. Eng. Sci. 2001, 56, 5473–5483. [Google Scholar] [CrossRef]
- Litwinowicz, M.A.; Thompson, R.L.; Gibson, C.P. MUSCtR. Available online: https://sourceforge.net/projects/musctr/ (accessed on 29 September 2021).
- Briddick, A.; Li, P.; Hughes, A.; Courchay, F.; Martinez, A.; Thompson, R.L. Surfactant and Plasticizer Segregation in Thin Poly(Vinyl Alcohol) Films. Langmuir 2016, 32, 864–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barradas, N.P.; Jeynes, C. Advanced Physics and Algorithms in the IBA DataFurnace. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2008, 266, 1875–1879. [Google Scholar] [CrossRef] [Green Version]
- Jeynes, C.; Barradas, N.P.; Szilágyi, E. Accurate Determination of Quantity of Material in Thin Films by Rutherford Backscattering Spectrometry. Anal. Chem. 2012, 84, 6061–6069. [Google Scholar] [CrossRef] [Green Version]
- Stalder, A.F.; Kulik, G.; Sage, D.; Barbieri, L.; Hoffmann, P. A Snake-Based Approach to Accurate Determination of Both Contact Points and Contact Angles. Colloids Surf. A Physicochem. Eng. Asp. 2006, 286, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, H.; Rehage, H. Molecular Orientation of Monododecyl Pentaethylene Glycol (C12E5) Surfactants at Infinite Dilution at the Air/Water Interface. A Molecular Dynamics Computer Simulation Study. Phys. Chem. Chem. Phys. 2000, 2, 1023–1028. [Google Scholar] [CrossRef]
- Fong, R.J.; Squillace, O.; Reynolds, C.D.; Cooper, J.F.K.; Dalgliesh, R.M.; Tellam, J.; Courchay, F.; Thompson, R.L. Segregation of Amine Oxide Surfactants in PVA Films. Langmuir 2020, 36, 4795–4807. [Google Scholar] [CrossRef] [Green Version]
- Wahlgren, M.; Kedström, J.; Arnebrant, T. The Interactions in Solution between Nonionic Surfactants and Globular Proteins: Effects on Cloud Point. J. Dispers. Sci. Technol. 1997, 18, 449–458. [Google Scholar] [CrossRef]
- Lee, L.-H. Adhesion of High Polymers. II. Wettability of Elastomers. J. Polym. Sci. Part A-2 Polym. Phys. 1967, 5, 1103–1118. [Google Scholar] [CrossRef]
- van Oss, C.J.; Chaudhury, M.K.; Good, R.J. Monopolar Surfaces. Adv. Colloid Interface Sci. 1987, 28, 35–64. [Google Scholar] [CrossRef]
- van Krevelen, D.W. ; Hoftyzer Properties of Polymers: Their Estimation and Correlation with Chemical Structure, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Wu, S. Estimation of the Critical Surface Tension for Polymers from Molecular Constitution by a Modified Hildebrand-Scott Equation. J. Phys. Chem. 1968, 72, 3332–3334. [Google Scholar] [CrossRef]
- Xie, W.; Weng, L.-T.; Yeung, K.L.; Chan, C.-M. Segregation of Dioctyl Phthalate to the Surface of Polystyrene Films Characterized by ToF-SIMS and XPS. Surf. Interface Anal. 2018, 50, 1302–1309. [Google Scholar] [CrossRef]
- Smith, G.S.; Skidmore, C.B.; Howe, P.M.; Majewski, J. Diffusion, Evaporation, and Surface Enrichment of a Plasticizing Additive in an Annealed Polymer Thin Film. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 3258–3266. [Google Scholar] [CrossRef]
- Garza, C.; Thieghi, L.T.; Castillo, R. Atomic Force Microscopy Images of Lyotropic Lamellar Phases. J. Chem. Phys. 2007, 126, 051106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.; Mao, G. Direct Study of C12E5 Aggregation on Mica by Atomic Force Microscopy Imaging and Force Measurements. Langmuir 2000, 16, 6641–6647. [Google Scholar] [CrossRef]
- Shirai, S.; Einaga, Y. Wormlike Micelles of Polyoxyethylene Dodecyl C12Ej and Heptaoxyethylene Alkyl CiE7 Ethers. Hydrophobic and Hydrophilic Chain Length Dependence of the Micellar Characteristics. Polym. J. 2005, 37, 913–924. [Google Scholar] [CrossRef] [Green Version]
Component | SLD/10−6 Å−2 | Density/g cm−3 |
---|---|---|
cis-PI | 0.26 | 0.91 |
d25-C12E5 | 3.60 | 0.963 |
Si | 2.07 | 2.33 |
SiO2 | 3.47 | 2.56 |
z*/Å | |||||
---|---|---|---|---|---|
[d25-C12E5] /wt% | 20 °C | 45 °C | 60 °C | 20 °C, 10 s rinse | 20 °C, 20 s rinse |
1 | 14 | 13 | 14 | 13 | 14 |
2.5 | 16 | 17 | 14 | 11 | 11 |
5 | 15 | 17 | 18 | 13 | 14 |
10 | 36 | 34 | 33 | 30 | 34 |
Film Surfactant Loading/wt. % | |
---|---|
1 | 0.24 |
2.5 | 0.20 |
5 | 0.08 |
10 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibson, C.P.; Litwinowicz, M.A.; Tellam, J.P.; Welbourn, R.J.L.; Skoda, M.W.A.; Claussen, J.; Thompson, R.L. Water-Resistant Surface Modification of Hydrophobic Polymers with Water-Soluble Surfactant Additives. Polymers 2021, 13, 3407. https://doi.org/10.3390/polym13193407
Gibson CP, Litwinowicz MA, Tellam JP, Welbourn RJL, Skoda MWA, Claussen J, Thompson RL. Water-Resistant Surface Modification of Hydrophobic Polymers with Water-Soluble Surfactant Additives. Polymers. 2021; 13(19):3407. https://doi.org/10.3390/polym13193407
Chicago/Turabian StyleGibson, Colin P., Matthew A. Litwinowicz, James P. Tellam, Rebecca J. L. Welbourn, Maximilian W. A. Skoda, Jan Claussen, and Richard L. Thompson. 2021. "Water-Resistant Surface Modification of Hydrophobic Polymers with Water-Soluble Surfactant Additives" Polymers 13, no. 19: 3407. https://doi.org/10.3390/polym13193407
APA StyleGibson, C. P., Litwinowicz, M. A., Tellam, J. P., Welbourn, R. J. L., Skoda, M. W. A., Claussen, J., & Thompson, R. L. (2021). Water-Resistant Surface Modification of Hydrophobic Polymers with Water-Soluble Surfactant Additives. Polymers, 13(19), 3407. https://doi.org/10.3390/polym13193407