Parametric Analysis of Epoxy/Crumb Rubber Composite by Using Taguchi—GRA Hybrid Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Erosion Test Rig
2.4. Erosion Efficiency
- E is the erosion rate;
- H is the hardness of the eroding material;
- δ is the density of eroding material;
- is the impact velocity of erodent particles;
- α is the angle between the sample surface and line of erodent impact.
2.5. Experimental Design and Procedure
2.6. Gray Relational Analysis
3. Results and Discussions
3.1. Effect of Velocity
3.2. Effect of Impingement Angle
3.3. Effect of Crumb Rubber
3.4. Effect of Standoff Distance
3.5. Effect of Erodent Size
3.6. ANOVA (Analysis of Variance) Analysis
3.7. Mathematical Model
3.8. Verification of the Optimal Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, N.; Doddamani, M. Polymer matrix composites. JOM 2018, 70, 1282–1283. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, H.; Jadhav, A.; Takkalkar, P.; Hossain, N.; Nizammudin, S.; Zahoor, M.; Jamal, M.; Mubarak, N.M.; Griffin, G.; Kao, N. Potential of polylactide based nanocomposites-nanopolysaccharide filler for reinforcement purpose: A comprehensive review. J. Polym. Res. 2020, 27, 1–36. [Google Scholar] [CrossRef]
- Raza, A.; Rashedi, A.; Rafique, U.; Hossain, N.; Akinyemi, B.; Naveen, J. On the structural performance of recycled aggregate concrete columns with glass fiber-reinforced composite bars and hoops. Polymers 2021, 13, 1508. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.D. Polymer-matrix composites: Structure and processing. In Carbon Composites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 161–217. [Google Scholar]
- Dalbehera, S.; Acharya, S.K. Impact of Cenosphere on the Erosion Wear Response of Woven Hybrid Jute-Glass Epoxy Composites. Adv. Polym. Technol. 2018, 37, 240–246. [Google Scholar] [CrossRef]
- Shahapurkar, K.; Doddamani, M.; Kumar, G.C.M.; Gupta, N. Effect of cenosphere filler surface treatment on the erosion behavior of epoxy matrix syntactic foams. Polym. Compos. 2019, 40, 2109–2118. [Google Scholar] [CrossRef]
- Harsha, A.; Tewari, U.; Venkatraman, B. Solid particle erosion behaviour of various polyaryletherketone composites. Wear 2003, 254, 693–712. [Google Scholar] [CrossRef]
- Biswas, S.; Satapathy, A. Tribo-performance analysis of red mud filled glass-epoxy composites using Taguchi experimental design. Mater. Des. 2009, 30, 2841–2853. [Google Scholar] [CrossRef]
- Biswas, S.; Satapathy, A. Use of copper slag in glass-epoxy composites for improved wear resistance. Waste Manag. Res. 2010, 28, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Shahapurkar, K. Compressive behavior of crump rubber reinforced epoxy composites. Polym. Compos. 2021, 42, 329–341. [Google Scholar] [CrossRef]
- Arani, N.H.; Rabba, W.; Papini, M. Solid particle erosion of epoxy matrix composites reinforced by Al2O3 spheres. Tribol. Int. 2019, 136, 432–445. [Google Scholar] [CrossRef]
- Dong, M.; Li, Q.; Liu, H.; Liu, C.; Wujcik, E.K.; Shao, Q.; Ding, T.; Mai, X.; Shen, C.; Guo, Z. Thermoplastic polyurethane-carbon black nanocomposite coating: Fabrication and solid particle erosion resistance. Polymer 2018, 158, 381–390. [Google Scholar] [CrossRef]
- Padhi, P.K.; Satapathy, A. Prediction and Simulation of Erosion Wear Behavior of Glass-Epoxy Composites Filled with Blast Furnace Slag. Adv. Mater. Res. 2012, 585, 549–553. [Google Scholar] [CrossRef]
- Pati, P.R.; Satpathy, M.P. Investigation on red brick dust filled epoxy composites using ant lion optimization approach. Polym. Compos. 2019, 40, 3877–3885. [Google Scholar] [CrossRef]
- Agrawal, A.; Satapathy, A. Thermal and dielectric behavior of epoxy composites filled with ceramic micro particulates. J. Compos. Mater. 2014, 48, 3755–3769. [Google Scholar] [CrossRef]
- Harsha, A.; Jha, S.K. Erosive wear studies of epoxy-based composites at normal incidence. Wear 2008, 265, 1129–1135. [Google Scholar] [CrossRef]
- Shahapurkar, K.; Soudagar, M.E.M.; Shahapurkar, P.; Mathapathi, M.; Khan, T.M.Y.; Mujtaba, M.A.; Ali, M.D.I.; Thanaiah, K.; Siddiqui, I.H. Effect of crump rubber on the solid particle erosion response of epoxy composites. J. Appl. Polym. Sci. 2021, 139, 51470. [Google Scholar] [CrossRef]
- Shahapurkar, K. Tensile behavior of environmental pollutant crumb rubber filled epoxy composites. Mater. Res. Express 2021, 8, 095505. [Google Scholar] [CrossRef]
- Shahapurkar, K.; Chenrayan, V.; Soudagar, M.E.M.; Badruddin, I.A.; Shahapurkar, P.; Elfasakhany, A.; Mujtaba, M.; Siddiqui, I.H.; Ali, M.A.; Mahlia, T.M.I. Leverage of Environmental Pollutant Crump Rubber on the Dry Sliding Wear Response of Epoxy Composites. Polymer 2021, 13, 2894. [Google Scholar] [CrossRef]
- Mahapatra, S.S.; Patnaik, A.; Satapathy, A. Taguchi method applied to parametric appraisal of erosion behavior of GF-reinforced polyester composites. Wear 2008, 265, 214–222. [Google Scholar] [CrossRef]
- Patnaik, A.; Satapathy, A.; Mahapatra, S.; Dash, R. Parametric Optimization Erosion Wear of Polyester-GF-Alumina Hybrid Composites using the Taguchi Method. J. Reinf. Plast. Compos. 2008, 27, 1039–1058. [Google Scholar] [CrossRef]
- Bagci, M. Determination of solid particle erosion with Taguchi optimization approach of hybrid composite systems. Tribol. Int. 2016, 94, 336–345. [Google Scholar] [CrossRef]
- Lamy, B. Effect of brittleness index and sliding speed on the morphology of surface scratching in abrasive or erosive processes. Tribol. Int. 1984, 17, 35–38. [Google Scholar] [CrossRef]
- Preece, C.M. Treatise on Materials Science and Technology; Academic Press: Cambridge, MA, USA, 1979; Volume 16, p. 450. [Google Scholar]
- Preece, C.M.; Macmillan, N.H. Erosion. Annu. Rev. Mater. Sci. 1977, 7, 95–121. [Google Scholar] [CrossRef]
- Reddy, A.; Sundararajan, G. Erosion behaviour of ductile materials with a spherical non-friable erodent. Wear 1986, 111, 313–323. [Google Scholar] [CrossRef]
- Sheldon, G.L.; Finnie, I. The Mechanism of Material Removal in the Erosive Cutting of Brittle Materials. J. Eng. Ind. 1966, 88, 393–399. [Google Scholar] [CrossRef]
- Kleis, I. Probleme der Bestimmung des Strahlverschleisses bei metallen. Wear 1969, 13, 199–215. [Google Scholar] [CrossRef]
- Zum Gahr, K.H. Microstructure and Wear of Materials; Elsevier: Amsterdam, The Netherlands, 1987; Volume 10. [Google Scholar]
- Ericson, F.; Johansson, S.; Schweitz, J.Å. Hardness and fracture toughness of semiconducting materials studied by indentation and erosion techniques. Mater. Sci. Eng. A 1988, 105–106, 131–141. [Google Scholar] [CrossRef]
- Wiederhorn, S.M.; Hockey, B.J. Effect of material parameters on the erosion resistance of brittle materials. J. Mater. Sci. 1983, 18, 766–780. [Google Scholar] [CrossRef]
- Sundararajan, G.; Roy, M.; Venkataraman, B. Erosion efficiency-a new parameter to characterize the dominant erosion micromechanism. Wear 1990, 140, 369–381. [Google Scholar] [CrossRef]
- Ray, S.; Rout, A.K.; Sahoo, A.K. A Study on Tribological Behavior of Glass-Epoxy Composite Filled with Granite Dust. IOP Conf. Series: Mater. Sci. Eng. 2017, 225, 12097. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, M.; Singh, T.; Dwivedi, M.; Patnaik, A. Waste marble dust-filled glass fiber-reinforced polymer composite Part I: Physical, thermomechanical, and erosive wear properties. Polym. Compos. 2019, 40, 4113–4124. [Google Scholar] [CrossRef]
- Purohit, A.; Satapathy, A. Processing, characterization, and parametric analysis of erosion behavior of epoxy-LD sludge composites using Taguchi technique and response surface method. Polym. Compos. 2018, 39, E2283–E2297. [Google Scholar] [CrossRef]
- Gupta, G.; Satapathy, A. Processing, characterization, and erosion wear characteristics of borosilicate glass microspheres filled epoxy composites. Polym. Compos. 2015, 36, 1685–1692. [Google Scholar] [CrossRef]
- Ross, P.J.; Ross, P.J. Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Barkoula, N.-M.; Karger-Kocsis, J. Effects of fibre content and relative fibre-orientation on the solid particle erosion of GF/PP composites. Wear 2002, 252, 80–87. [Google Scholar] [CrossRef]
- Venkatesh, C.; Venkatesan, R. Optimization of process parameters of Hot extrusion of SiC/Al 6061 composite using taguchi’s technique and upper bound technique. Mater. Manuf. Process. 2015, 30, 85–92. [Google Scholar] [CrossRef]
- Venkatesh, C.; Moorthy, N.S.; Venkatesan, R.; Aswinprasad, V. Optimization of Process Parameters of Pulsed Electro Deposition Technique for Nanocrystalline Nickel Coating Using Gray Relational Analysis (GRA). Int. J. Nanosci. 2017, 17, 1760007. [Google Scholar] [CrossRef]
- Gupta, N.; Zeltmann, S.E.; Shunmugasamy, V.C.; Pinisetty, D. Applications of Polymer Matrix Syntactic Foams. JOM 2014, 66, 245–254. [Google Scholar] [CrossRef]
- Srivastava, V. Effects of wheat starch on erosive wear of E-glass fibre reinforced epoxy resin composite materials. Mater. Sci. Eng. A 2006, 435–436, 282–287. [Google Scholar] [CrossRef]
- Panchal, M.; Raghavendra, G.; Prakash, M.O.; Ojha, S. Effects of Environmental Conditions on Erosion Wear of Eggshell Particulate Epoxy Composites. Silicon 2018, 10, 627–634. [Google Scholar] [CrossRef]
- Rout, A.K.; Satapathy, A. Study on mechanical and tribo-performance of rice-husk filled glass–epoxy hybrid composites. Mater. Des. 2012, 41, 131–141. [Google Scholar] [CrossRef]
- Tewari, U.S.; Harsha, A.P.; Häger, A.M.; Friedrich, K. Solid particle erosion of carbon fibre– and glass fibre–epoxy composites. Compos. Sci. Technol. 2003, 63, 549–557. [Google Scholar] [CrossRef]
- Srivastava, V.; Pawar, A. Solid particle erosion of glass fibre reinforced flyash filled epoxy resin composites. Compos. Sci. Technol. 2006, 66, 3021–3028. [Google Scholar] [CrossRef]
- Rao, P.V.; Buckley, D.H. Angular Particle Impingement Studies of Thermoplastic Materials at Normal Incidence. ASLE Trans. 1986, 29, 283–298. [Google Scholar] [CrossRef]
- Mohan, N.; Natarajan, S.; Babu, S.P.K.; Siddaramaiah, S.; Lee, J.H. Studies on Erosive Wear Behavior of UHMWPE-Filled Aramid–Epoxy Hybrid Composites. Mater. Manuf. Process. 2012, 27, 430–435. [Google Scholar] [CrossRef]
- Prakash, K.S.; Gopal, P.; Karthik, S. Multi-objective optimization using Taguchi based grey relational analysis in turning of Rock dust reinforced Aluminum MMC. Measurement 2020, 157, 107664. [Google Scholar] [CrossRef]
S. No. | Parameters | Symbol | Unit | Level | ||
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
1 | Velocity | A | m/s | 30 | 45 | 60 |
2 | Angle of Impingement | B | Degree | 30 | 60 | 90 |
3 | Crumb Rubber Composition | C | % | 10 | 20 | 30 |
4 | Standoff Distance | D | mm | 90 | 120 | 150 |
5 | Erodent size | E | Micron | 150 | 200 | 250 |
S.No. | Velocity (m/s) | Angle (°) | Crumb Rubber (%) | Standoff Distance (mm) | Erodent Size (μm) | Erodent Rate (mg/g) | Erodent Efficiency (%) |
---|---|---|---|---|---|---|---|
1 | 30 | 30 | 10 | 90 | 150 | 730.86 | 36.27 |
2 | 30 | 30 | 20 | 120 | 200 | 554.93 | 27.76 |
3 | 30 | 30 | 30 | 150 | 250 | 543.50 | 24.67 |
4 | 30 | 60 | 10 | 90 | 200 | 409.91 | 20.34 |
5 | 30 | 60 | 20 | 120 | 250 | 624.97 | 31.27 |
6 | 30 | 60 | 30 | 150 | 150 | 330.15 | 16.64 |
7 | 30 | 90 | 10 | 90 | 250 | 682.85 | 33.90 |
8 | 30 | 90 | 20 | 120 | 150 | 536.63 | 26.84 |
9 | 30 | 90 | 30 | 150 | 200 | 466.78 | 23.52 |
10 | 45 | 30 | 10 | 150 | 150 | 752.16 | 12.44 |
11 | 45 | 30 | 20 | 90 | 200 | 825.14 | 13.76 |
12 | 45 | 30 | 30 | 120 | 250 | 454.93 | 9.32 |
13 | 45 | 60 | 10 | 150 | 200 | 412.67 | 6.82 |
14 | 45 | 60 | 20 | 90 | 250 | 414.20 | 5.63 |
15 | 45 | 60 | 30 | 120 | 150 | 407.57 | 6.85 |
16 | 45 | 90 | 10 | 150 | 250 | 433.94 | 7.18 |
17 | 45 | 90 | 20 | 90 | 150 | 678.96 | 11.32 |
18 | 45 | 90 | 30 | 120 | 200 | 435.89 | 12.36 |
19 | 60 | 30 | 10 | 120 | 150 | 932.00 | 11.57 |
20 | 60 | 30 | 20 | 150 | 200 | 507.61 | 6.34 |
21 | 60 | 30 | 30 | 90 | 250 | 501.38 | 7.13 |
22 | 60 | 60 | 10 | 120 | 200 | 489.09 | 6.07 |
23 | 60 | 60 | 20 | 150 | 250 | 612.82 | 7.66 |
24 | 60 | 60 | 30 | 90 | 150 | 435.07 | 5.49 |
25 | 60 | 90 | 10 | 120 | 250 | 666.81 | 8.27 |
26 | 60 | 90 | 20 | 150 | 150 | 752.39 | 9.41 |
27 | 60 | 90 | 30 | 90 | 200 | 421.32 | 9.09 |
S. No. | S/N Ratio | Normalized S/N Ratio | Gray Relational Coefficient | Gray Relational Grade | CGRG | Rank | ||||
---|---|---|---|---|---|---|---|---|---|---|
(ER) | (EF) | (ER) | (EF) | (ER) | (EF) | (ER) | (EF) | |||
1 | −42.96 | −16.88 | 0.2235 | 0.0166 | 0.7765 | 0.9834 | 0.3917 | 0.3371 | 0.3644 | 27 |
2 | −40.57 | −14.56 | 0.4766 | 0.1525 | 0.5234 | 0.8475 | 0.4886 | 0.3711 | 0.4298 | 24 |
3 | −40.39 | −13.53 | 0.4957 | 0.2125 | 0.5043 | 0.7875 | 0.4979 | 0.3884 | 0.4431 | 21 |
4 | −37.94 | −11.86 | 0.7550 | 0.3105 | 0.2450 | 0.6895 | 0.6712 | 0.4204 | 0.5458 | 15 |
5 | −41.60 | −15.59 | 0.3673 | 0.0921 | 0.6327 | 0.9079 | 0.4414 | 0.3551 | 0.3983 | 25 |
6 | −36.06 | −10.11 | 0.9539 | 0.4126 | 0.0461 | 0.5874 | 0.9156 | 0.4598 | 0.6877 | 7 |
7 | −42.37 | −16.29 | 0.2859 | 0.0512 | 0.7141 | 0.9488 | 0.4118 | 0.3451 | 0.3785 | 26 |
8 | −40.28 | −14.26 | 0.5074 | 0.1696 | 0.4926 | 0.8304 | 0.5037 | 0.3758 | 0.4398 | 22 |
9 | −39.07 | −13.12 | 0.6356 | 0.2366 | 0.3644 | 0.7634 | 0.5784 | 0.3958 | 0.4871 | 18 |
10 | −43.21 | −7.58 | 0.1971 | 0.5604 | 0.8029 | 0.4396 | 0.3838 | 0.5321 | 0.4579 | 19 |
11 | −44.02 | −8.46 | 0.1120 | 0.5093 | 0.8880 | 0.4907 | 0.3602 | 0.5047 | 0.4325 | 23 |
12 | −38.85 | −5.08 | 0.6592 | 0.7071 | 0.3408 | 0.2929 | 0.5947 | 0.6306 | 0.6126 | 11 |
13 | −38.00 | −2.37 | 0.7488 | 0.8655 | 0.2512 | 0.1345 | 0.6656 | 0.7880 | 0.7268 | 4 |
14 | −38.03 | −0.71 | 0.7454 | 0.9626 | 0.2546 | 0.0374 | 0.6626 | 0.9305 | 0.7966 | 1 |
15 | −37.89 | −2.40 | 0.7603 | 0.8639 | 0.2397 | 0.1361 | 0.6759 | 0.7861 | 0.7310 | 3 |
16 | −38.43 | −2.81 | 0.7027 | 0.8399 | 0.2973 | 0.1601 | 0.6271 | 0.7575 | 0.6923 | 6 |
17 | −42.32 | −6.76 | 0.2912 | 0.6084 | 0.7088 | 0.3916 | 0.4136 | 0.5608 | 0.4872 | 17 |
18 | −38.47 | −7.52 | 0.6985 | 0.5640 | 0.3015 | 0.4360 | 0.6239 | 0.5342 | 0.5790 | 13 |
19 | −45.07 | −6.95 | 0.0000 | 0.5976 | 1.0000 | 0.4024 | 0.3333 | 0.5541 | 0.4437 | 20 |
20 | −39.80 | −1.74 | 0.5585 | 0.9025 | 0.4415 | 0.0975 | 0.5311 | 0.8368 | 0.6839 | 8 |
21 | −39.69 | −2.75 | 0.5699 | 0.8433 | 0.4301 | 0.1567 | 0.5376 | 0.7614 | 0.6495 | 9 |
22 | −39.47 | −1.35 | 0.5927 | 0.9254 | 0.4073 | 0.0746 | 0.5511 | 0.8701 | 0.7106 | 5 |
23 | −41.43 | −3.38 | 0.3854 | 0.8067 | 0.6146 | 0.1933 | 0.4486 | 0.7212 | 0.5849 | 12 |
24 | −38.46 | −0.47 | 0.7003 | 0.9770 | 0.2997 | 0.0230 | 0.6252 | 0.9560 | 0.7906 | 2 |
25 | −42.17 | −4.04 | 0.3078 | 0.7678 | 0.6922 | 0.2322 | 0.4194 | 0.6829 | 0.5511 | 14 |
26 | −43.22 | −5.16 | 0.1968 | 0.7024 | 0.8032 | 0.2976 | 0.3837 | 0.6269 | 0.5053 | 16 |
27 | −38.18 | −4.86 | 0.7298 | 0.7199 | 0.2702 | 0.2801 | 0.6492 | 0.6409 | 0.6450 | 10 |
Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Velocity m/s | 2 | 21,583 | 3.39% | 21,583 | 10,791 | 0.81 | 0.463 |
Angle of Incident (Deg) | 2 | 302,433 | 47.51% | 175,089 | 87,545 | 6.55 | 0.008 |
Crumb Rubber (%) | 2 | 222,671 | 34.98% | 158,993 | 79,496 | 5.95 | 0.012 |
Stand of Distance (mm) | 2 | 4830 | 0.76% | 4830 | 2415 | 0.18 | 0.836 |
Erodent size (Mic) | 2 | 62,308 | 9.79% | 62,308 | 31,154 | 2.33 | 0.129 |
Error | 16 | 22,789 | 3.58% | 213,765 | 13,360 | ||
Total | 26 | 636,568 | 100.00% | R2 | 96.42% |
Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Velocity m/s | 2 | 1980.65 | 82.28% | 1980.65 | 990.324 | 79.99 | 0.000 |
Angle of Incident (Deg) | 2 | 116.88 | 4.86% | 116.88 | 58.442 | 4.72 | 0.024 |
Crumb Rubber (%) | 2 | 51.30 | 2.13% | 51.30 | 25.649 | 2.07 | 0.158 |
Standoff Distance (mm) | 2 | 53.11 | 2.21% | 53.11 | 26.557 | 2.15 | 0.150 |
Erodent size (Mic) | 2 | 7.16 | 0.30% | 7.16 | 3.581 | 0.29 | 0.753 |
Error | 16 | 198.08 | 8.23% | 198.08 | 12.380 | ||
Total | 26 | 2407.19 | 100.00% | R2 | 91.77% |
Random | Optimal Parameters | ||
---|---|---|---|
Predicted | Experimental | ||
Combination Level | A2B3C2D2E2 | A2B2C3D3E3 | A2B2C3D3E3 |
Erosion Rate | 821.14 | 410.2 | |
Erosion efficiency | 13.759 | 5.239 | |
GRG | 0.4325 | 0.746 | 0.8353 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahapurkar, K.; Chenrayan, V.; Tesfamarium, B.B.; Soudagar, M.E.M.; Hossain, N.; A. Rajhi, A.; Alamri, S.; Alarifi, I.M.; Shahapurkar, P.; Mujtaba, M.A.; et al. Parametric Analysis of Epoxy/Crumb Rubber Composite by Using Taguchi—GRA Hybrid Technique. Polymers 2021, 13, 3441. https://doi.org/10.3390/polym13193441
Shahapurkar K, Chenrayan V, Tesfamarium BB, Soudagar MEM, Hossain N, A. Rajhi A, Alamri S, Alarifi IM, Shahapurkar P, Mujtaba MA, et al. Parametric Analysis of Epoxy/Crumb Rubber Composite by Using Taguchi—GRA Hybrid Technique. Polymers. 2021; 13(19):3441. https://doi.org/10.3390/polym13193441
Chicago/Turabian StyleShahapurkar, Kiran, Venkatesh Chenrayan, Belay Brehane Tesfamarium, Manzoore Elahi M. Soudagar, Nazia Hossain, Ali A. Rajhi, Sagr Alamri, Ibrahim M. Alarifi, Pavan Shahapurkar, M. A. Mujtaba, and et al. 2021. "Parametric Analysis of Epoxy/Crumb Rubber Composite by Using Taguchi—GRA Hybrid Technique" Polymers 13, no. 19: 3441. https://doi.org/10.3390/polym13193441
APA StyleShahapurkar, K., Chenrayan, V., Tesfamarium, B. B., Soudagar, M. E. M., Hossain, N., A. Rajhi, A., Alamri, S., Alarifi, I. M., Shahapurkar, P., Mujtaba, M. A., Kiran, M. C., & Sayeed Ahmed, G. M. (2021). Parametric Analysis of Epoxy/Crumb Rubber Composite by Using Taguchi—GRA Hybrid Technique. Polymers, 13(19), 3441. https://doi.org/10.3390/polym13193441