Heterogeneous Hybrid Nanocomposite Based on Chitosan/Magnesia Hybrid Films: Ecofriendly and Recyclable Solid Catalysts for Organic Reactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Nanocomposite Films
2.3. Characterization of the Chitosan-Mgo Hybrid Films
2.4. General Procedure for Synthesis of Pyrimidine Derivatives
2.5. General Procedure for Synthesis of Benzochromene Derivatives
2.6. General Procedure for Synthesis of Coumarin Derivatives
2.7. General Procedure for Synthesis of Heterocyclic Arylidene-Malononitriles
3. Results and Discussion
3.1. Characterization of Chitosan-Mgo Nanocomposite Films
3.1.1. Microscopic Analysis
3.1.2. XPS Analysis
3.1.3. Thermogravimetric Analysis
3.2. Application of the CS-Mgo Nanocomposite Films As Heterogeneous Basic Catalyst
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khalil, K.D.; Ibrahim, E.I.; Al-Sagheer, F.A. A novel, efficient, and recyclable biocatalyst for Michael addition reactions and its iron(iii) complex as promoter for alkyl oxidation reactions. Catal. Sci. Technol. 2016, 6, 1410–1416. [Google Scholar] [CrossRef]
- Khalil, K.; Al-Matar, H.; Elnagdi, M. Chitosan as an eco-friendly heterogeneous catalyst for Michael type addition reactions. A simple and efficient route to pyridones and phthalazines. Eur. J. Chem. 2010, 1, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Khalil, K.D.; Al-Matar, H.M. Chitosan Based Heterogeneous Catalyses: Chitosan-Grafted-Poly(4-Vinylpyridne) as an Efficient Catalyst for Michael Additions and Alkylpyridazinyl Carbonitrile Oxidation. Molecules 2013, 18, 5288–5305. [Google Scholar] [CrossRef] [Green Version]
- Mallesham, B.; Raikwar, D.; Shee, D. Chapter 1—The Role of Catalysis in Green Synthesis of Chemicals for Sustainable Future; Advanced Functional Solid Catalysts for Biomass Valorization; Hussain, C.M., Sudarsanam, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–37. [Google Scholar]
- Kim, Y.; Li, C.-J. Perspectives on green synthesis and catalysis. Green Synth. Catal. 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Jiang, S.; Cao, W.-B.; Li, H.-Y.; Xu, X.-P.; Ji, S.-J. Convenient synthesis of spiroindolenines from tryptamine-derived isocyanides and organic azides by cobalt catalysis in pure water. Green Chem. 2021, 23, 2619–2623. [Google Scholar] [CrossRef]
- Dekamin, M.G.; Eslami, M. Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino-3-cyano-4H-pyrans under mechanochemical ball milling. Green Chem. 2014, 16, 4914–4921. [Google Scholar] [CrossRef]
- Valizadeh, H.; Fakhari, A. Facile, efficient, and eco-friendly synthesis of benzo[b]pyran-2-imines over MgO and transformation to the coumarin derivatives. J. Heterocycl. Chem. 2009, 46, 1392–1395. [Google Scholar] [CrossRef]
- Mirzaei, H.; Davoodnia, A. Microwave Assisted Sol-Gel Synthesis of MgO Nanoparticles and Their Catalytic Activity in the Synthesis of Hantzsch 1,4-Dihydropyridines. Chin. J. Catal. 2012, 33, 1502–1507. [Google Scholar] [CrossRef]
- Kumar, D.; Reddy, V.B.; Mishra, B.G.; Rana, R.; Nadagouda, M.N.; Varma, R.S. Nanosized magnesium oxide as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes. Tetrahedron 2007, 63, 3093–3097. [Google Scholar] [CrossRef]
- Bartley, J.K.; Xu, C.; Lloyd, R.; Enache, D.; Knight, D.W.; Hutchings, G.J. Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Appl. Catal. B: Environ. 2012, 128, 31–38. [Google Scholar] [CrossRef]
- Gower, L.B. Biomimetic Model Systems for Investigating the Amorphous Precursor Pathway and Its Role in Biomineralization. Chem. Rev. 2008, 108, 4551–4627. [Google Scholar] [CrossRef] [Green Version]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef] [Green Version]
- Doustkhah, E.; Rostamnia, S.; Gholipour, B.; Zeynizadeh, B.; Baghban, A.; Luque, R. Design of chitosan-dithiocarbamate magnetically separable catalytic nanocomposites for greener aqueous oxidations at room temperature. Mol. Catal. 2017, 434, 7–15. [Google Scholar] [CrossRef]
- Di Carlo, G.; Curulli, A.; Toro, R.G.; Bianchini, C.; De Caro, T.; Padeletti, G.; Zane, D.; Ingo, G.M. Green Synthesis of Gold–Chitosan Nanocomposites for Caffeic Acid Sensing. Langmuir 2012, 28, 5471–5479. [Google Scholar] [CrossRef]
- Hardy, J.J.E.; Hubert, S.; Macquarrie, D.J.; Wilson, A.J. Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions. Green Chem. 2003, 6, 53–56. [Google Scholar] [CrossRef]
- Singidi, R.R.; RajanBabu, T.V. Borostannylation of Alkynes and Enynes. Scope and Limitations of the Reaction and Utility of the Adducts. Org. Lett. 2010, 12, 2622–2625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makhubela, B.C.E.; Jardine, A.; Smith, G. Rh(i) complexes supported on a biopolymer as recyclable and selective hydroformylation catalysts. Green Chem. 2011, 14, 338–347. [Google Scholar] [CrossRef]
- Alirezvani, Z.; Dekamin, M.G.; Valiey, E. Cu(II) and magnetite nanoparticles decorated melamine-functionalized chitosan: A synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Six-Membered Heterocycles: Sections 6.1–6.9. In The Chemistry of Heterocycles; Wiley-VCH Verlag GmbH: Washington, DC, USA, 2003; pp. 222–256.
- Zeydi, M.M.; Kalantarian, S.J.; Kazeminejad, Z. Overview on developed synthesis procedures of coumarin heterocycles. J. Iran. Chem. Soc. 2020, 17, 3031–3094. [Google Scholar] [CrossRef]
- Irfan, A.; Rubab, L.; Rehman, M.U.; Anjum, R.; Ullah, S.; Marjana, M.; Qadeer, S.; Sana, S. Coumarin sulfonamide derivatives: An emerging class of therapeutic agents. Heterocycl. Commun. 2020, 26, 46–59. [Google Scholar] [CrossRef]
- Valentina, M.; David, A.E. Recent Advances in Microwave-Assisted Synthesis of Heterocyclic Compounds. Curr. Org. Synth. 2005, 2, 333–375. [Google Scholar]
- Al-Sagheer, F.; Merchant, S. Visco-elastic properties of chitosan–titania nano-composites. Carbohydr. Polym. 2011, 85, 356–362. [Google Scholar] [CrossRef]
- Al-Sagheer, F.; Muslim, S. Thermal and Mechanical Properties of Chitosan/SiO2Hybrid Composites. J. Nanomater. 2010, 2010, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Li, P.-C.; Liao, G.; Kumar, S.R.; Shih, C.-M.; Yang, C.-C.; Wang, D.-M.; Lue, S.J. Fabrication and Characterization of Chitosan Nanoparticle-Incorporated Quaternized Poly(Vinyl Alcohol) Composite Membranes as Solid Electrolytes for Direct Methanol Alkaline Fuel Cells. Electrochim. Acta 2016, 187, 616–628. [Google Scholar] [CrossRef]
- Al-Fulaij, O.; Elassar, A.-Z.A.; Alsagheer, F. Utility of newly modified chitosan in the removal of heavy metal ions from aqueous medium: Ion selectivity, XPS and TGA. Bull. Mater. Sci. 2019, 42, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gieroba, B.; Sroka-Bartnicka, A.; Kazimierczak, P.; Kalisz, G.; Lewalska-Graczyk, A.; Vivcharenko, V.; Nowakowski, R.; Pieta, I.S.; Przekora, A. Spectroscopic studies on the temperature-dependent molecular arrangements in hybrid chitosan/1,3-β-D-glucan polymeric matrices. Int. J. Biol. Macromol. 2020, 159, 911–921. [Google Scholar] [CrossRef]
- Desimoni, E.; Brunetti, B. X-Ray Photoelectron Spectroscopic Characterization of Chemically Modified Electrodes Used as Chemical Sensors and Biosensors: A Review. Chemosensors 2015, 3, 70–117. [Google Scholar] [CrossRef] [Green Version]
- Vieira, R.S.; Oliveira, M.L.M.; Guibal, E.; Rodríguez-Castellón, E.; Beppu, M.M. Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: An XPS investigation of mechanism. Colloids Surf. A: Physicochem. Eng. Asp. 2011, 374, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.P.; Rath, C. Passivation of native defects of ZnO by doping Mg detected through various spectroscopic techniques. RSC Adv. 2015, 5, 44390–44397. [Google Scholar] [CrossRef]
- Raghuvanshi, D.S.; Singh, K.N. Microwave-assisted one-pot synthesis of functionalized pyrimidines using ionic liquid. J. Heterocycl. Chem. 2011, 48, 582–585. [Google Scholar] [CrossRef]
- Rong, L.; Han, H.; Gao, L.; Dai, Y.; Cao, M.; Tu, S. Efficient and Facile Synthesis of 2,4-Diamino-6-arylpyrimidine-5-carbonitrile Under Solvent-Free Conditions. Synth. Commun. 2010, 40, 504–509. [Google Scholar] [CrossRef]
- Deshmukh, M.; Salunkhe, S.; Patil, D.; Anbhule, P. A novel and efficient one step synthesis of 2-amino-5-cyano-6-hydroxy-4-aryl pyrimidines and their anti-bacterial activity. Eur. J. Med. Chem. 2009, 44, 2651–2654. [Google Scholar] [CrossRef] [PubMed]
- Bararjanian, M.; Balalaie, S.; Rominger, F.; Barouti, S. A Novel and Efficient One-Pot Synthesis of 2-Aminopyrimidinones and Their Self-Assembly. Helvetica Chim. Acta 2010, 93, 777–784. [Google Scholar] [CrossRef]
- Khurana, J.M.; Nand, B.; Saluja, P. DBU: A highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H benzo[g]chromenes in aqueous medium. Tetrahedron 2010, 66, 5637–5641. [Google Scholar] [CrossRef]
- Jin, T.-S.; Zhang, J.-S.; Liu, L.-B.; Wang, A.-Q.; Li, T.-S. Clean, One-Pot Synthesis of Naphthopyran Derivatives in Aqueous Media. Synth. Commun. 2006, 36, 2009–2015. [Google Scholar] [CrossRef]
- Bobal, P.; Bobálová, J. An Efficient Chemoselective Reduction of Furan Series Unsaturated Dinitriles. Molecules 2013, 18, 2212–2221. [Google Scholar] [CrossRef] [Green Version]
No. | Product 1 | Ar | Solvent | m.p. (°C) | MgO %Yield | CS-MgO %Yield |
---|---|---|---|---|---|---|
1 | 1a | C6H5– | EtOH/H2O | 234–23 [31] | 70 | 80 |
2 | 1a | C6H5– | MeOH | 78 | 85 | |
3 | 1a | C6H5– | MeCN | - | 92 | |
4 | 1a | C6H5– | Solvent free | - | 68 | |
5 | 1b | 4-Cl–C6H4– | EtOH/H2O | 233 [31] | 65 | 70 |
6 | 1b | 4-Cl–C6H4– | MeOH | 72 | 75 | |
7 | 1b | 4-Cl–C6H4– | MeCN | - | 97 | |
8 | 1b | 4-Cl–C6H4– | Solvent free | - | 78 | |
9 | 1c | 4-MeO–C6H4– | EtOH/H2O | 238 [32] | 72 | 80 |
10 | 1c | 4-MeO–C6H4– | MeOH | 85 | 90 | |
11 | 1c | 4-MeO–C6H4– | MeCN | - | 90 | |
12 | 1c | 4-MeO–C6H4– | Solvent free | - | 85 |
No. | Product 2 | Ar | Solvent | m.p. (°C) | MgO %Yield | CS-MgO %Yield |
---|---|---|---|---|---|---|
1 | 2a | C6H5– | EtOH/H2O | 242–243 | 70 | 74 |
2 | 2a | C6H5– | MeOH | 74 | 81 | |
3 | 2a | C6H5– | MeCN | - | 78 | |
4 | 2a | C6H5– | Solvent free | - | 69 | |
5 | 2b | 4-Cl–C6H4– | EtOH/H2O | 248–250 [35] | 60 | 62 |
6 | 2b | 4-Cl–C6H4– | MeOH | 66 | 68 | |
7 | 2b | 4-Cl–C6H4– | MeCN | - | 69 | |
8 | 2b | 4-Cl–C6H4– | Solvent free | - | 57 | |
9 | 2c | 4-NO2–C6H4– | EtOH/H2O | 223–224 [34] | 74 | 75 |
10 | 2c | 4-NO2–C6H4– | MeOH | 80 | 84 | |
11 | 2c | 4- NO2–C6H4– | MeCN | - | 85 | |
12 | 2c | 4-NO2–C6H4– | Solvent free | - | 75 | |
13 | 2d | 4-NC–C6H4– | EtOH/H2O | 357–358 | 69 | 69 |
14 | 2d | 4-NC–C6H4– | MeOH | 78 | 82 | |
15 | 2d | 4-NC–C6H4– | MeCN | - | 86 | |
16 | 2d | 4-NC–C6H4– | Solvent free | - | 77 |
No. | Product 3 | Ar | Solvent | m.p. (°C) obs. Lit. | MgO %Yield | CS-MgO %Yield | |
---|---|---|---|---|---|---|---|
1 | 3a | C6H5– | EtOH | 218 | 218–219 [36] | 70 | 75 |
2 | 3a | C6H5– | EtOH/H2O | 75 | 78 | ||
3 | 3a | C6H5– | Solvent free | - | 71 | ||
4 | 3b | 4-Cl–C6H4– | EtOH | 231–232 | 232–233 [36] | 78 | 84 |
5 | 3b | 4-Cl–C6H4– | EtOH/H2O | 88 | 92 | ||
6 | 3b | 4-Cl–C6H4– | Solvent free | - | 78 | ||
7 | 3c | 4-NO2–C6H4– | EtOH | 184 | 184–185 [37] | 70 | 74 |
8 | 3c | 4-NO2–C6H4– | EtOH/H2O | 76 | 78 | ||
9 | 3c | 4-NO2–C6H4– | Solvent free | - | 67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madkour, M.; Khalil, K.D.; Al-Sagheer, F.A. Heterogeneous Hybrid Nanocomposite Based on Chitosan/Magnesia Hybrid Films: Ecofriendly and Recyclable Solid Catalysts for Organic Reactions. Polymers 2021, 13, 3583. https://doi.org/10.3390/polym13203583
Madkour M, Khalil KD, Al-Sagheer FA. Heterogeneous Hybrid Nanocomposite Based on Chitosan/Magnesia Hybrid Films: Ecofriendly and Recyclable Solid Catalysts for Organic Reactions. Polymers. 2021; 13(20):3583. https://doi.org/10.3390/polym13203583
Chicago/Turabian StyleMadkour, Metwally, Khaled D. Khalil, and Fakhreia A. Al-Sagheer. 2021. "Heterogeneous Hybrid Nanocomposite Based on Chitosan/Magnesia Hybrid Films: Ecofriendly and Recyclable Solid Catalysts for Organic Reactions" Polymers 13, no. 20: 3583. https://doi.org/10.3390/polym13203583
APA StyleMadkour, M., Khalil, K. D., & Al-Sagheer, F. A. (2021). Heterogeneous Hybrid Nanocomposite Based on Chitosan/Magnesia Hybrid Films: Ecofriendly and Recyclable Solid Catalysts for Organic Reactions. Polymers, 13(20), 3583. https://doi.org/10.3390/polym13203583