Pre-Heating Effect on Monomer Elution and Degree of Conversion of Contemporary and Thermoviscous Bulk-Fill Resin-Based Dental Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Bulk-Fill Resin-Based Composites and Sample Preparation
2.2. Temperature Measurement
2.3. Micro-Raman Spectroscopy Measurement
2.4. Reversed-Phase High-Performance Liquid Chromatography Measurement
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- (1)
- Significantly higher DC values were achieved on the top of the room temperature and pre-heated investigated bulk-fill RBCs than on the bottom.
- (2)
- Room temperature VisCalor Bulk has lower DC% values both on the top and bottom compared to Filtek One Bulk.
- (3)
- Pre-heating did not influence the DC of VisCalor Bulk, however, significantly decreased the DC at the bottom of Filtek One Bulk.
- (4)
- Pre-heating had no effect on the monomer elution from VisCalor Bulk, but significantly decreased the monomer release from Filtek One Bulk.
- (5)
- Material factor had a significant effect on each investigated variable, while Temperature factor and its interaction with Material is surface- (top vs. bottom) and monomer-dependent.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Freedman, G.; Krejci, I. Warming up to composites. Compend. Contin. Educ. Dent. 2004, 25, 371–374. [Google Scholar] [PubMed]
- Lohbauer, U.; Zinelis, S.; Rahiotis, C.; Petschelt, A.; Eliades, G. The effect of resin composite pre-heating on monomer conversion and polymerization shrinkage. Dent. Mater. 2009, 25, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L.; Greener, E.H. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J. Biomed. Mater. Res. 1986, 20, 121–131. [Google Scholar] [CrossRef]
- Lempel, E.; Czibulya, Z.; Kunsági-Máté, S.; Szalma, J.; Sümegi, B.; Böddi, K. Quantification of conversion degree and monomer elution from dental composite using HPLC and micro-Raman spectroscopy. Chromatographia 2014, 77, 1137–1144. [Google Scholar] [CrossRef]
- AlShaafi, M.M. Factors affecting polymerization of resin-based composites: A literature review. Saudi Dent. J. 2017, 29, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Daronch, M.; Rueggeberg, F.A.; De Goes, M.F.; Giudici, R. Polymerization kinetics of pre-heated composite. J. Dent. Res. 2006, 85, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.N.; Raj, J.D.; Sherlin, H. Effects of preheated composite on microleakage: An in-vitro Study. J. Clin. Diagn. Res. 2016, 10, ZC36–ZC38. [Google Scholar] [PubMed]
- Calheiros, F.C.; Daronch, M.; Rueggeberg, F.A.; Braga, R.R. Effect of temperature on composite polymerization stress and degree of conversion. Dent. Mater. 2014, 30, 613–618. [Google Scholar] [CrossRef]
- Mohsen, N.M.; Craig, R.G.; Filisko, F.E. Effects of curing time and filler concentration on curing and postcuring of urethane dimethacrylate composites: A microcalorimetric study. J. Biomed. Mater. Res. 1998, 40, 224–232. [Google Scholar] [CrossRef]
- Daronch, M.; Rueggeberg, F.A.; De Goes, M.F. Monomer conversion of pre-heated composite. J. Dent. Res. 2005, 84, 663–667. [Google Scholar] [CrossRef]
- Price, R.B.; Ferracane, J.L.; Shortall, A.C. Light-curing units: A Review of what we need to know. J. Dent. Res. 2015, 94, 1179–1186. [Google Scholar] [CrossRef]
- Masutani, S.; Setcos, J.C.; Schnell, R.J.; Phillips, R.W. Temperature rise during polymerization of visible light-activated composite resins. Dent. Mater. 1988, 4, 174–178. [Google Scholar] [CrossRef]
- Lempel, E.; Őri, Z.; Kincses, D.; Lovász, B.V.; Kunsági-Máté, S.; Szalma, J. Degree of conversion and in vitro temperature rise of pulp chamber during polymerization of flowable and sculptable conventional, bulk-fill and short-fibre reinforced resin composites. Dent. Mater. 2021, 37, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Fròes-Salgado, N.R.; Silva, L.M.; Kawano, Y.; Francci, C.; Reis, A.; Loguercio, A.D. Composite pre-heating: Effects on marginal adaptation, degree of conversion and mechanical properties. Dent. Mater. 2010, 26, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Wagner, W.C.; Aksu, M.N.; Neme, A.M.; Linger, J.B.; Pink, F.E.; Walker, S. Effect of pre-heating resin composite on restoration microleakage. Oper. Dent. 2008, 33, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Dionysopoulos, D.; Tolidis, K.; Gerasimou, P.; Koliniotou-Koumpia, E. Effect of preheating on the film thickness of contemporary composite restorative materials. J. Dent. Sci. 2014, 9, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Loumprinis, N.; Maier, E.; Belli, R.; Petschelt, A.; Eliades, G.; Lohbauer, U. Viscosity and stickiness of dental resin composites at elevated temperatures. Dent. Mater. 2021, 37, 413–422. [Google Scholar] [CrossRef]
- Daronch, M.; Rueggeberg, F.A.; Moss, L.; de Goes, M.F. Clinically relevant issues related to pre-heating composites. J. Esthet. Restor. Dent. 2006, 18, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Lempel, E.; Őri, Z.; Szalma, J.; Lovász, B.V.; Kiss, A.; Tóth, Á.; Kunsági-Máté, S. Effect of exposure time and pre-heating on the conversion degree of conventional, bulk-fill, fiber reinforced and polyacid-modified resin composites. Dent. Mater. 2019, 35, 217–228. [Google Scholar] [CrossRef]
- Chesterman, J.; Jowett, A.; Gallacher, A.; Nixon, P. Bulk-fill resin-based composite restorative materials: A review. Br. Dent. J. 2017, 222, 337–344. [Google Scholar] [CrossRef]
- Alrahlah, A.; Silikas, N.; Watts, D.C. Post-cure depth of cure of bulk fill dental resin-composites. Dent. Mater. 2014, 30, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.B.W.; Troconis, C.C.M.; Moreno, M.B.P.; Murillo-Gómez, F.; De Goes, M.F. Depth of cure of bulk fill resin composites: A systematic review. J. Esthet. Restor. Dent. 2018, 30, 492–501. [Google Scholar] [CrossRef]
- Van Ende, A.; De Munck, J.; Lise, D.P.; Van Meerbeek, B. Bulk-Fill Composites: A Review of the current literature. J. Adhes. Dent. 2017, 19, 95–109. [Google Scholar] [PubMed] [Green Version]
- Lempel, E.; Czibulya, Z.; Kovács, B.; Szalma, J.; Tóth, Á.; Kunsági-Máté, S.; Varga, Z.; Böddi, K. Degree of conversion and BisGMA, TEGDMA, UDMA elution from flowable bulk fill composites. Int. J. Mol. Sci. 2016, 17, 732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ausiello, P.; Dal Piva, A.M.O.; Borges, A.L.S.; Lanzotti, A.; Zamparini, F.; Epifania, E.; Tribst, J.P.M. Effect of shrinking and no shrinking dentine and enamel replacing materials in posterior restorations: A 3D-FEA study. Appl. Sci. 2021, 11, 2215. [Google Scholar] [CrossRef]
- VisCalor® Dispenser Instructions for Use. Available online: https://www.voco.dental/en/portaldata/1/resources/products/instructions-for-use/e1/viscalor-dispenser_ifu_e1.pdf (accessed on 4 November 2019).
- Yang, J.; Silikas, N.; Watts, D.C. Pre-heating effects on extrusion force, stickiness and packability of resin-based composite. Dent. Mater. 2019, 35, 1594–1602. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Silikas, N.; Watts, D.C. Pre-heating time and exposure duration: Effects on post-irradiation properties of a thermo-viscous resin-composite. Dent. Mater. 2020, 36, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Marcondes, R.L.; Lima, V.P.; Barbon, F.J.; Isolan, C.P.; Carvalho, M.A.; Salvador, M.V.; Lima, A.F.; Moraes, R.R. Viscosity and thermal kinetics of 10 preheated restorative resin composites and effect of ultrasound energy on film thickness. Dent. Mater. 2020, 36, 1356–1364. [Google Scholar] [CrossRef]
- Demirel, G.; Orhan, A.I.; Irmak, Ö.; Aydin, F.; Buyuksungur, A.; Bilecenoǧlu, B.; Orhan, K. Micro-computed tomographic evaluation of the effects of pre-heating and sonic delivery on the internal void formation of bulk-fill composites. Dent. Mater. J. 2021, 40, 525–531. [Google Scholar] [CrossRef]
- Colombo, M.; Gallo, S.; Poggio, C.; Ricaldone, V.; Arciola, C.R.; Scribante, A. New resin-based bulk-fill composites: In vitro evaluation of micro-hardness and depth of cure as infection risk indexes. Materials 2020, 13, 1308. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, M. In vitro and in vivo studies on the toxicity of dental resin components: A review. Clin. Oral Investig. 2008, 12, 1–8. [Google Scholar] [CrossRef]
- Silva, G.S.; Almeida, G.S.; Poskus, L.T.; Guimarães, J.G. Relationship between the degree of conversion; solubility and salivary sorption of a hybrid and nanofilled resin composite: Influence of the light activation mode. Appl. Oral Sci. 2008, 16, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Alshali, R.Z.; Salim, N.A.; Sung, R.; Satterthwaite, J.D.; Silikas, N. Analysis of long-term monomer elution from bulk-fill and conventional resin-composites using high performance liquid chromatography. Dent. Mater. 2015, 31, 1587–1598. [Google Scholar] [CrossRef]
- Cramer, N.B.; Stansbury, J.W.; Bowman, C.N. Recent advances and developments in composite dental restorative materials. J. Dent. Res. 2011, 90, 402–416. [Google Scholar] [CrossRef] [Green Version]
- Leprince, J.G.; Palin, W.M.; Hadis, M.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef]
- Halvorson, R.H.; Erickson, R.L.; Davidson, C.L. Energy dependent polymerization of resin-based composite. Dent. Mater. 2002, 18, 463–469. [Google Scholar] [CrossRef]
- Trujillo, M.; Newman, S.M.; Stansburry, J.W. Use of near-IR to monitor the influence of external heating on dental composite photopolymerization. Dent. Mater. 2004, 20, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Tauböck, T.T.; Tarle, Z.; Marovic, D.; Attin, T. Pre-heating of high-viscosity bulk-fill resin composites: Effects on shrinkage force and monomer conversion. J. Dent. 2015, 43, 1358–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daronch, M.; Rueggeberg, F.A.; Hall, G.; De Goes, M.F. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent. Mater. 2007, 23, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.C.; Goldberg, M.P. Surface temperature and temperature gradients of human teeth in situ. Arch. Oral Biol. 1966, 11, 973–982. [Google Scholar] [CrossRef]
- Al-Ahdal, K.; Ilie, N.; Silikas, N.; Watts, D.C. Polymerization kinetics and impact of post polymerization on the degree of conversion of bulk-fill resin composite at clinically relevant depth. Dent. Mater. 2015, 31, 1207–1213. [Google Scholar] [CrossRef]
- Anseth, K.S.; Newman, S.M.; Bowman, C.M. Polymeric dental composites: Properties and reaction behavior of multimethacrylate dental restorations. Adv. Polym. Sci. 1995, 122, 177–217. [Google Scholar]
- Par, M.; Gamulin, O.; Marovic, D.; Klaric, E.; Tarle, Z. Raman spectroscopic assessment of degree of conversion of bulk-fill resin composites—Changes at 24 hours post cure. Oper. Dent. 2015, 40, E92–E101. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L.; Mitchem, J.C.; Condon, J.R.; Todd, R. Wear and marginal breakdown of composites with various degrees of cure. J. Dent. Res. 1997, 76, 1508–1516. [Google Scholar] [CrossRef]
- Galvao, M.R.; Caldas, S.G.; Bagnato, V.S.; Rastelli, A.N.; Andrade, M.F. Evaluation of degree of conversion and hardness of dental composites photoactivated with different light guide tips. Eur. J. Dent. 2013, 7, 86–93. [Google Scholar]
- Silikas, N.; Eliades, G.; Watts, D.C. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent. Mater. 2000, 16, 292–296. [Google Scholar] [CrossRef]
- Soares, L.E.; Liporoni, P.C.; Martin, A.A. The effect of soft-start polymerization by second generation LEDs on the degree of conversion of resin composite. Oper. Dent. 2007, 32, 160–165. [Google Scholar] [CrossRef]
- Musanje, L.; Darvell, B.W. Curing-light attenuation in filled-resin restorative materials. Dent. Mater. 2006, 22, 804–817. [Google Scholar] [CrossRef] [PubMed]
- Rueggeberg, F.A.; Caughman, W.F.; Curtis, J.W., Jr. Effect of light intensity and exposure duration on cure of resin composite. Oper. Dent. 1994, 19, 26–32. [Google Scholar] [PubMed]
- Emami, N.; Söderholm, K.J. How light irradiance and curing time affect monomer conversion in light-cured resin composites. Eur. J. Oral Sci. 2003, 111, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N.; Stark, K. Curing behavior of high-viscosity bulk-fill composites. J. Dent. 2014, 42, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Daugherty, M.M.; Lien, W.; Mansell, M.R.; Risk, D.L.; Savett, D.A.; Vandewalle, K.S. Effect of high-intensity curing lights on the polymerization of bulk-fill composites. Dent. Mater. 2018, 34, 1531–1541. [Google Scholar] [CrossRef]
- AlShaafi, M.M.; Harlow, J.E.; Price, H.L.; Rueggeberg, F.A.; Labrie, D.; AlQahtani, M.Q.; Price, R.B. Emission characteristics and effect of battery drain in “budget” curing lights. Oper. Dent. 2016, 41, 397–408. [Google Scholar] [CrossRef]
- Sideridou, I.D.; Karabela, M.M. Effect of the amount of 3-methacryloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites. Dent. Mater. 2009, 25, 1315–1324. [Google Scholar] [CrossRef]
- Barszczewska-Rybarek, A guide through the dental dimethacrylate polymer network structural characterization and interpretation of physico-mechanical properties. Materials 2019, 12, 4047.
- Alshali, R.Z.; Silikas, N.; Satterthwaite, J.D. Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent. Mater. 2013, 29, 213–217. [Google Scholar] [CrossRef]
- Khatri, C.A.; Stansbury, J.W.; Schultheisz, C.R.; Antonucci, J.M. Synthesis characterization and evaluation of urethane derivates of Bis-GMA. Dent. Mater. 2003, 19, 584–588. [Google Scholar] [CrossRef]
- Tarle, Z.; Attin, T.; Marovic, D.; Andermatt, L.; Ristic, M.; Tauböck, T.T. Influence of irradiation time on subsurface degree of conversion and microhard-ness of high-viscosity bulk-fill resin composites. Clin. Oral Investig. 2015, 19, 831–840. [Google Scholar] [CrossRef] [Green Version]
- Yap, A.U.J.; . Pandya, M.; Toh, W.S. Depth of cure of contemporary bulk-fill resin-based composites. Dent. Mater. J. 2016, 35, 503–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, F.; Campos, L.M.P.; Rodrigues-Júnior, E.C.; Costa, F.V.; Marques, P.A.; Francci, C.E.; Braga, R.R.; Boaro, L.C.C. A comparative study of bulk-fill composites: Degree of conversion, post-gel shrinkage and cytotoxicity. Braz. Oral Res. 2018, 32, e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barszczewska-Rybarek. The role of molecular structure on impact resistance and bending strength of photocured urethane-dimethacrylate polymer networks. Polym. Bull 2017, 74, 4023–4040. [Google Scholar] [CrossRef]
- Deb, S.; Di Silvio, L.; Mackler, H.E.; Millar, B.J. Pre-warming of dental composites. Dent. Mater. 2011, 27, e-51-9. [Google Scholar] [CrossRef] [PubMed]
- El-Korashy, D.I. Post-gel shrinkage strain and degree of conversion of preheated resin composite cured using different regimens. Oper. Dent. 2010, 35, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Andrzejewska, E. Photopolymerization kinetics of multifunctional monomers. Prog. Polym. Sci. 2001, 26, 605–665. [Google Scholar] [CrossRef]
- Broer, D.J.; Mol, G.N.; Challa, G. Temperature effects on the kinetics of photoinitiated polymerization of dimethacrylates. Polymer 1991, 32, 690–695. [Google Scholar] [CrossRef] [Green Version]
- Andrzejewska, P.K.; Stansbury, J.W.; Bowman, C.N. Application of an addition-fragmentation-chain-transfer monomer in di(meth)acrylate network formation to reduce polymerization shrinkage stress. Polym. Chem. 2017, 8, 4339–4351. [Google Scholar]
- Park, H.Y.; Kloxin, C.J.; Abuelyaman, A.S.; Oxman, J.D.; Bowman, C.N. Novel dental restorative materials having low polymerization shrinkage stress via stress relaxation by addition-fragmentation chain transfer. Dent. Mater. 2012, 28, 1113–1119. [Google Scholar] [CrossRef] [Green Version]
- Nada, K.; El-Mowafi, O. Effect of precuring warming on mechanical properties of restorative composites. Int. J. Dent. 2011, 2011, 536212. [Google Scholar] [CrossRef]
- Abdulmajeed, A.A.; Donovan, T.E.; Cook, R.; Sulaiman, T.A. Effect of preheating and fatiquing on mechanical properties of bulk-fill and conventional composite resin. Oper. Dent. 2020, 45, 387–395. [Google Scholar] [CrossRef]
- Walter, R.; Swift, E.J.; Sheikh, H.; Ferracane, J.L. Effects of temperature on composite resin shrinkage. Quintessence Int. 2009, 40, 843–847. [Google Scholar]
- Kramer, M.R.; Edelhoff, D.; Stawarczyk, B. Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin. Materials 2016, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Goulart, M.; Veleda, B.B.; Damin, D.; Ambrosano, G.M.B.; de Souza, F.H.C.; l Erhardt, M.C.G. Preheated composite resin used as a luting agent for indirect restorations: Effects on bond strength and resin-dentin interfaces. Int. J. Esthet. Dent. 2018, 13, 86–97. [Google Scholar]
- Moldovan, M.; Balazsi, R.; Soanca, A.; Roman, A.; Sarosi, C.; Prodan, D.; Vlassa, M.; Cojocari, I.; Saceleanu, V.; Cristescu, I. Evaluation of the degree of conversion residual monomers and mechanical properties of some light-cured dental resin composites. Materials 2019, 12, 2109. [Google Scholar] [CrossRef] [Green Version]
- Miletic, V.; Santini, A.; Trkulja, I. Quantification of monomer elution and carbon–carbon double bonds in dental adhesive systems using HPLC and micro-Raman spectroscopy. J. Dent. 2009, 37, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Viljanena, E.K.; Langer, S.; Skrifvars, M.; Vallittu, P.K. Analysis of residual monomers in dendritic methacrylate copolymers and composites by HPLC and headspace-GC/MS. Dent. Mater. 2006, 22, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Franz, A.; Konig, F.; Lucas, T.; Watts, D.C.; Schedle, A. Cytotoxic effects of dental bonding substances as a function of degree of conversion. Dent. Mater. 2009, 25, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Durner, J.; Obermaier, J.; Draenert, M.; Ilie, N. Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent. Mater. 2012, 28, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Sideridou, I.D.; Achilias, D.S. Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cureddental resins and resin composites using HPLC. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 74, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J. Elution of leachable components from composites. J. Oral Rehabil. 1994, 21, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Gul, P.; Alp, H.H.; Özcan, M. Monomer release from bulk-fill composite resins in different curing protocols. J. Oral Sci. 2020, 62, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Cebe, M.A.; Cebe, F.; Cengiz, M.F.; Cetin, A.R.; Arpag, O.F.; Ozturk, B. Elution of monomer from different bulk fill dental composite resins. Dent. Mater. 2015, 31, e141–e149. [Google Scholar] [CrossRef] [PubMed]
- Peutzfeldt, A. Resin composites in dentistry: The monomer system. Eur. J. Oral Sci. 1997, 105, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 2002, 23, 1819–1829. [Google Scholar] [CrossRef]
- Chaharom, M.E.E.; Safyari, L.; Safarvand, H.; Jafari-Navimipour, E.; Alizadeh-Oskoee, P.; Ajami, A.A.; Abed-Kahnamouei, M.; Bahari, M. The effect of pre-heating on monomer elution from bulk-fill resin composites. J. Clin. Exp. Dent. 2020, 12, e813–e820. [Google Scholar] [CrossRef] [PubMed]
- Chaharom, M.E.E.; Bahari, M.; Safyari, L.; Safarvand, H.; Shafaei, H.; Jafari-Navimipour, E.; Alizadeh-Oskoee, P.; Ajami, A.A.; Abed-Kahnamouei, M. Effect of preheating on the cytotoxicity of bulk-fill composite resins. Dent. Res. Dent. Clin. Dent. Prospect. 2020, 14, 19–25. [Google Scholar] [CrossRef]
- De Castro, F.L.A.; Campos, B.B.; Bruno, K.F.; Reges, R.V. Temperature and curing time affect composite sorption and solubility. J. Appl. Oral Sci. 2013, 21, 157–162. [Google Scholar] [CrossRef] [Green Version]
Material | Manufacturer | Pre-Cure Temperature | Code | Resin System | Filler | Filler Loading |
---|---|---|---|---|---|---|
VisCalor Bulk | Voco, Cuxhaven, Germany | Room temperature | VCB_RT | Bis-GMA, aliphatic dimethacrylates | Inorganic nanohybrid filler (not defined by the manufacturer) | 83 wt% |
Pre-heated to 65 °C | VCB_65 | |||||
Filtek One Bulk-fill Restorative | 3M ESPE, St. Paul, MN, USA | Room temperature | FOB_RT | AFM, UDMA, AUDMA, DDMA | 20 nm silica, 4–11 nm zirconia, cluster Zr-silica, 0.1 µm ytterbium-trifluoride | 58.5 vol% 76.5 wt% |
Pre-heated to 55 °C | FOB_55 |
Room Temperature | Pre-Heated | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Top | Bottom | t-Value * | p-Value * | 95% CI | Top | Bottom | t-Value * | p-Value * | 95% CI | |
Lower Upper | Lower Upper | |||||||||
FOB | 63.0 (2.0) | 51.8 (1.4) | 31.7 (4) | <0.005 | 26.3 31.3 | 64.0 (1.4) | 45.0 (1.9) | −17.2 (4) | <0.005 | 15.1 20.8 |
VCB | 54.2 (2.9) | 46.2 (1.4) | 4.6 (4) | 0.01 | 1.2 5.1 | 55.0 (1.3) | 45.2 (4.1) | −25.1 (4) | <0.005 | 33.6 41.9 |
Factor | Degree of Conversion (DC) | |||
---|---|---|---|---|
Top Surface | Bottom Surface | |||
p Value | Partial ƞ2 | p Value | Partial ƞ2 | |
Material | <0.001 | 0.86 | 0.028 | 0.27 |
Temperature | 0.23 | 0.09 | 0.004 | 0.42 |
Material × Temperature | 0.81 | 0.004 | 0.022 | 0.29 |
Monomer | Resin Composite | Mean (S.D.) | t-Value (df) | p-Value | 95% CI | ||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Room temperature | TEGDMA | Filtek One Bulk | 0 | ||||
Viscalor Bulk | 0.1 (0.01) | ||||||
UDMA | Filtek One Bulk | 0.33 (0.34) | 20.57 (8) | <0.001 | 0.29 | 0.36 | |
Viscalor Bulk | 0.01 (0.01) | ||||||
BisGMA | Filtek One Bulk | 0.22 (0.01) | −19.43 (8) | <0.001 | −2.33 | −1.84 | |
Viscalor Bulk | 2.3 (0.24) | ||||||
DDMA | Filtek One Bulk | 0.26 (0.02) | 13.08 (8) | <0.001 | 0.13 | 0.18 | |
Viscalor Bulk | 0.1 (0.02) | ||||||
Pre-heated | TEGDMA | Filtek One Bulk | 0 | ||||
Viscalor Bulk | 0.08 (0.01) | ||||||
UDMA | Filtek One Bulk | 0.17 (0.11) | 2.92 (8) | 0.02 | 0.03 | 0.27 | |
Viscalor Bulk | 0.02 (0.03) | ||||||
BisGMA | Filtek One Bulk | 0.08 (0.08) | −10.9 (8) | <0.001 | −2.29 | −1.49 | |
Viscalor Bulk | 1.98 (0.38) | ||||||
DDMA | Filtek One Bulk | 0.15 (0.09) | 1.19 (8) | 0.27 | −0.05 | 0.16 | |
Viscalor Bulk | 0.09 (0.04) |
Monomer | Temperature | Mean (S.D.) | t-Value (df) | p-Value | 95% CI | ||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Filtek One Bulk | TEGDMA | Room temperature | 0 | ||||
Pre-heated | 0 | ||||||
UDMA | Room temperature | 0.33 (0.34) | 3.04 (8) | 0.016 | 0.04 | 0.28 | |
Pre-heated | 0.17 (0.11) | ||||||
BisGMA | Room temperature | 0.22 (0.01) | 3.73 (8) | 0.006 | 0.05 | 0.22 | |
Pre-heated | 0.08 (0.08) | ||||||
DDMA | Room temperature | 0.26 (0.02) | 2.6 (8) | 0.03 | 0.01 | 0.21 | |
Pre-heated | 0.15 (0.09) | ||||||
Viscalor Bulk | TEGDMA | Room temperature | 0.1 (0.01) | 3.12 (8) | 0.014 | 0.01 | 0.04 |
Pre-heated | 0.08 (0.01) | ||||||
UDMA | Room temperature | 0.01 (0.01) | −0.87 (8) | 0.41 | −0.05 | 0.02 | |
Pre-heated | 0.02 (0.03) | ||||||
BisGMA | Room temperature | 2.3 (0.24) | 1.64 (8) | 0.14 | −0.13 | 0.79 | |
Pre-heated | 1.98 (0.38) | ||||||
DDMA | Room temperature | 0.1 (0.02) | 0.36 (8) | 0.73 | −0.04 | 0.05 | |
Pre-heated | 0.09 (0.04) |
Factor | Monomer Elution | |||||||
---|---|---|---|---|---|---|---|---|
BisGMA | UDMA | TEGDMA | DDMA | |||||
p Value | Partial ƞ2 | p Value | Partial ƞ2 | p Value | Partial ƞ2 | p Value | Partial ƞ2 | |
Material | <0.001 | 0.96 | <0.001 | 0.75 | <0.001 | 0.49 | ||
Temperature | 0.036 | 0.23 | 0.046 | 0.21 | 0.014 | 0.55 | 0.036 | 0.23 |
Material × Temperature | 0.35 | 0.054 | 0.006 | 0.38 | 0.04 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kincses, D.; Böddi, K.; Őri, Z.; Lovász, B.V.; Jeges, S.; Szalma, J.; Kunsági-Máté, S.; Lempel, E. Pre-Heating Effect on Monomer Elution and Degree of Conversion of Contemporary and Thermoviscous Bulk-Fill Resin-Based Dental Composites. Polymers 2021, 13, 3599. https://doi.org/10.3390/polym13203599
Kincses D, Böddi K, Őri Z, Lovász BV, Jeges S, Szalma J, Kunsági-Máté S, Lempel E. Pre-Heating Effect on Monomer Elution and Degree of Conversion of Contemporary and Thermoviscous Bulk-Fill Resin-Based Dental Composites. Polymers. 2021; 13(20):3599. https://doi.org/10.3390/polym13203599
Chicago/Turabian StyleKincses, Dóra, Katalin Böddi, Zsuzsanna Őri, Bálint Viktor Lovász, Sára Jeges, József Szalma, Sándor Kunsági-Máté, and Edina Lempel. 2021. "Pre-Heating Effect on Monomer Elution and Degree of Conversion of Contemporary and Thermoviscous Bulk-Fill Resin-Based Dental Composites" Polymers 13, no. 20: 3599. https://doi.org/10.3390/polym13203599
APA StyleKincses, D., Böddi, K., Őri, Z., Lovász, B. V., Jeges, S., Szalma, J., Kunsági-Máté, S., & Lempel, E. (2021). Pre-Heating Effect on Monomer Elution and Degree of Conversion of Contemporary and Thermoviscous Bulk-Fill Resin-Based Dental Composites. Polymers, 13(20), 3599. https://doi.org/10.3390/polym13203599