Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Pattern Preparation and Modification
2.3. Analytical Methods
2.4. Cell Culture
2.5. Cell Seeding and Staining
2.6. Fluorescence Microscopy
3. Results
3.1. Surface Morphology Analysis Using SEM and AFM Method
3.2. Surface Chemical Analysis
3.3. Surface Wettability
3.4. Cytocompatibility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three dimensional |
AFM | Atomic force microscopy |
BF | Breath figure |
EDS | Energy-dispersive X-ray spectroscopy |
FEP | Fluorinated ethylene propylene |
HCP | Honeycomb-like pattern |
HPLC | High-performance liquid chromatography |
IPS | Improved phase separation |
PMMA | Polymethyl methacrylate |
SEM | Scanning electron microscopy |
TCPS | Tissue culture polystyrene |
U-2 OS | Human cells from osteosarcoma |
References
- Karihaloo, B.L.; Zhang, K.; Wang, J. Honeybee combs: How the circular cells transform into rounded hexagons. J. R. Soc. Interface 2013, 10, 20130299. [Google Scholar] [CrossRef]
- Bekkar, F.; Bettahar, F.; Meghabar, R.; Hamadouche, M.; Moreno-Benitez, I.; Vilas-Vilela, J.L.; Ruiz-Rubio, L. Study of the capacity of poly(N-vinylcarbazole) derivatives to form honeycomb-like patterns. J. Appl. Polym. Sci. 2021, 138, 50975. [Google Scholar] [CrossRef]
- Bui, V.T.; Ko, S.H. Large-scale fabrication of commercially available, nonpolar linear polymer film with a highly ordered honeycomb pattern. ACS Appl. Mater. Interfaces 2015, 7, 10541–10547. [Google Scholar] [CrossRef]
- Svečnjak, L.; Chesson, L.A.; Gallina, A.; Maia, M.; Martinello, M.; Mutinelli, F.; Muz, N.M.; Nunes, F.M.; Saucy, F.; Tipple, B.J.; et al. Standard methods for Apis mellifera beeswax research. J. Apic. Res. 2019, 58, 1–108. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Bai, H.; Li, L. Breath figure: A nature-inspired preparation method for ordered porous films. Chem. Rev. 2015, 115, 9801–9868. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Ren, J.; Chen, S.; Luo, Y.; Bai, X.; Ye, L.; Yang, F.; Cao, Y. Large area electrochromic displays with ultrafast response speed and high contrast using solution-processable and patternable honeycomb-like polyaniline nanostructures. J. Electroanal. Chem. 2020, 870, 114248. [Google Scholar] [CrossRef]
- Hepburn, H.R.; Muerrle, T.; Radloff, S.E. The cell bases of honeybee combs. Apidologie 2007, 38, 268–271. [Google Scholar] [CrossRef] [Green Version]
- Bui, V.T.; Thi Thuy, L.; Chinh Tran, Q.; Nguyen, V.T.; Dao, V.D.; Sig Choi, J.; Choi, H. Ordered honeycomb biocompatible polymer films via a one-step solution immersion phase separation used as a scaffold for cell cultures. Chem. Eng. J. 2017, 320, 561–569. [Google Scholar] [CrossRef]
- Dao, V.D.; Bui, V.T.; Choi, H.S. Pt-coated cylindrical micropatterned honeycomb Petri dishes as an efficient TCO-free counter electrode in liquid junction photovoltaic devices. J. Power Sources 2018, 376, 41–45. [Google Scholar] [CrossRef]
- Bui, V.T.; Thi Thuy, L.; Choi, J.S.; Choi, H.S. Ordered cylindrical micropatterned Petri dishes used as scaffolds for cell growth. J. Colloid Interface Sci. 2018, 513, 161–169. [Google Scholar] [CrossRef]
- Hales, T.C. The honeycomb conjecture. Discret. Comput. Geom. 2001, 25, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Hales, T.C. Dělové koule a včelí plásty. Pokroky Mat. Fyziky Astron. 2001, 46, 101–118. [Google Scholar]
- Nazzi, F. The hexagonal shape of the honeycomb cells depends on the construction behavior of bees. Sci. Rep. 2016, 6, 28341. [Google Scholar] [CrossRef]
- Pirk, C.W.W.; Hepburn, H.R.; Radloff, S.E.; Tautz, J. Honeybee combs: Construction through a liquid equilibrium process? Naturwissenschaften 2004, 91, 350–353. [Google Scholar] [CrossRef]
- Sari, M.; Hening, P.; Chotiman, S.E.; Ana, D.I.; Yusuf, Y. Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering. Biomater. Res. 2021, 25, 2. [Google Scholar] [CrossRef] [PubMed]
- Hurtuková, K.; Fajstavrová, K.; Rimpelová, S.; Vokatá, B.; Fajstavr, D.; Slepičková Kasálková, N.; Siegel, J.; Švorčík, V.; Slepička, P. Antibacterial properties of a honeycomb-like pattern with cellulose acetate and silver nanoparticles. Materials 2021, 14, 4051. [Google Scholar] [CrossRef]
- Loh, Q.L.; Choong, B.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. B Rev. 2013, 19, 485–502. [Google Scholar] [CrossRef] [Green Version]
- Tu, C.; Cai, Q.; Yang, J.; Wan, Y.; Bei, J.; Wang, S. The fabrication and characterization of poly(lactic acid) scaffolds for tissue engineering by improved solid–liquid phase separation. Polym. Adv. Technol. 2003, 14, 565–573. [Google Scholar] [CrossRef]
- Calejo, M.T.; Ilmarinen, T.; Skottman, H.; Kellomäki, M. Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives. Acta Biomater. 2017, 66, 44–66. [Google Scholar] [CrossRef]
- Huang, K.; Pan, Q.; Yang, F.; Ni, S.; Wei, X.; He, D. Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D Appl. Phys. 2008, 41, 155417. [Google Scholar] [CrossRef]
- Ungár, T.; Gubicza, J.; Ribárik, G.; Borbély, A. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 2004, 34, 298–310. [Google Scholar] [CrossRef] [Green Version]
- Niezgoda, S.R.; Kanjarla, A.K.; Beyerlein, I.J.; Tomé, C.N. Stochastic modeling of twin nucleation in polycrystals: An application in hexagonal close-packed metals. Int. J. Plast. 2014, 56, 119–138. [Google Scholar] [CrossRef]
- Farjadian, F.; Azadi, S.; Mohammadi-Samani, S.; Ashrafi, H.; Azadi, A. A novel approach to the application of hexagonal mesoporous silica in solid-phase extraction of drugs. Heliyon 2018, 4, e00930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slepicka, P.; Siegel, J.; Lyutakov, O.; Slepickova Kasalkova, N.; Kolska, Z.; Bacakova, L.; Svorcik, V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018, 36, 839–855. [Google Scholar] [CrossRef] [PubMed]
- Slepička, P.; Neználová, K.; Fajstavr, D.; Slepičková Kasálková, N.; Švorčík, V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Process. Polym. 2019, 16, 1900063. [Google Scholar] [CrossRef]
- Karthaus, O.; Maruyama, N.; Cieren, X.; Shimomura, M.; Hasegawa, H.; Hashimoto, T. Water-assisted formation of micrometer-size honeycomb patterns of polymers. Langmuir 2000, 16, 6071–6076. [Google Scholar] [CrossRef]
- Ke, B.B.; Van, L.S.; Zhang, W.X.; Xu, Z.K. Controlled synthesis of linear and comb-like glycopolymers for preparation of honeycomb-patterned films. Polymer 2010, 51, 2168–2176. [Google Scholar] [CrossRef]
- Munoz-Bonilla, A.; Fernández-García, M.; Rodríguez-Hernández, J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 2014, 39, 510–554. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wu, Y.; Li, Z. Facile preparation of super-hydrophobic fabrics composed of fibres with microporous or microspherical coatings using the static breath figure method. Prog. Org. Coat. 2020, 149, 105938. [Google Scholar] [CrossRef]
- Fajstavrová, K.; Rimpelová, S.; Fajstavr, D.; Švorčík, V.; Slepička, P. PLLA honeycomb-like pattern on fluorinated ethylene propylene as a substrate for fibroblast growth. Polymers 2020, 12, 2436. [Google Scholar] [CrossRef]
- Bui, V.T.; Ko, S.; Choi, H.S. A surfactant-free bio-compatible film with a highly ordered honeycomb pattern fabricated via an improved phase separation method. Chem. Commun. 2014, 50, 3817. [Google Scholar] [CrossRef]
- Dou, Y.; Jin, M.; Zhou, G.; Shui, L. Breath figure method for construction of honeycomb films. Membranes 2015, 5, 399–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bui, V.T.; Dao, V.D.; Choi, H.S. Transferable thin films with sponge-like porous structure via improved phase separation. Polymer 2018, 101, 184–191. [Google Scholar] [CrossRef]
- Qi, S.; Moffat, J.G.; Yang, Z. Early stage phase separation in pharmaceutical solid dispersion thin films under high humidity: Improved spatial understanding using probe-based thermal and spectroscopic nanocharacterization methods. Mol. Pharm. 2013, 10, 918–930. [Google Scholar] [CrossRef] [PubMed]
- Shirzad, M.; Matbouei, A.; Fathi, A.; Rabiee, S.M. Experimental and numerical investigation of polymethyl methacrylate scaffolds for bone tissue engineering. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2020, 234, 586–594. [Google Scholar] [CrossRef]
- Tan, H.Y.; Loke, W.K.; Nguyen, N.T. A reliable method for bonding polydimethylsiloxane (PDMS) to polymethylmethacrylate (PMMA) and its application in micropumps. Sens. Actuators B 2010, 151, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Zafar, M.S. Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef] [PubMed]
- Matbouei, A.; Fathi, A.; Rabiee, S.M.; Shirzad, M. Layered manufacturing of a three-dimensional polymethyl methacrylate (PMMA) scaffold used for bone regeneration. Mater. Technol. 2018, 34, 167–177. [Google Scholar] [CrossRef]
- Ali, U.; Loke, W.K.; Bt. Abd Karim, K.J.; Buang, N.A. A Review of the properties and applications of poly(methyl methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Harb, S.V.; Bassous, N.J.; de Souza, T.A.C.; Trentin, A.; Pulcinelli, S.H.; Santilli, C.V.; Webster, T.J.; Lobo, A.O.; Hammer, P. Hydroxyapatite and β-TCP modified PMMA-TiO2 and PMMA-ZrO2 coatings for bioactive corrosion protection of Ti6Al4V implants. Mater. Sci. Eng. C 2020, 116, 111149. [Google Scholar] [CrossRef]
- Gautam, R.; Singh, R.D.; Sharma, V.P.; Siddhartha, R.; Chand, P.; Kumar, R. Biocompatibility of polymethylmethacrylate resins used in dentistry. J. Biomed. Mater. Res. 2012, 100B, 1444–1450. [Google Scholar] [CrossRef]
- Webb, J.C.J.; Spencer, R.F. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J. Bone Jt. Surg. 2007, 89-B, 851–857. [Google Scholar] [CrossRef]
- Arora, M.; Chan, E.K.; Gupta, S.; Diwan, A.D. Polymethylmethacrylate bone cements and additives: A review of the literature. World J. Orthop. 2013, 4, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Vallo, C.I.; Montemartini, P.E.; Lopez, J.M.P.; Cuadrado, T.R. Polymethylmethacrylate-based bone cement modified with hydroxyapatite. J. Biomed. Mater. Res. 1999, 48, 150–158. [Google Scholar] [CrossRef]
- Samad, H.A.; Jaafar, M.; Othman, R.; Kawashita, M.; Razak, N.H.A. New bioactive glass-ceramic: Synthesis and application in PMMA bone cement composites. Biomed. Mater. Eng. 2011, 21, 247–258. [Google Scholar] [CrossRef]
- Juřík, P.; Slepička, P.; Mistrík, J.; Janíček, P.; Rimpelová, S.; Kolská, Z.; Švorčík, V. Oriented gold ripple-like structures on poly-l-lactic acid. Appl. Surf. Sci. 2014, 321, 503–510. [Google Scholar] [CrossRef]
- Hassan, A.; Abd El Aal, S.A.; Shehata, M.M.; El-Saftawy, A.A. Plasma etching and modification of polyethylene for improved surface structure, wettability and optical behavior. Surf. Rev. Lett. 2018, 26, 1850220. [Google Scholar] [CrossRef]
- Ebnesajjad, S. Introduction to fluoropolymers. In Applied Plastics Engineering Handbook; Elsevier: Amsterdam, The Netherlands, 2017; pp. 55–71. [Google Scholar] [CrossRef]
- Chu, P.K.; Chen, J.Y.; Wang, L.P.; Huang, N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Rep. 2002, 36, 143–206. [Google Scholar] [CrossRef] [Green Version]
- Slepička, P.; Trostová, S.; Slepičková Kasálková, N.; Kolská, Z.; Sajdl, P.; Švorčík, V. Surface modification of biopolymers by argon plasma and thermal treatment. Plasma Process. Polym. 2011, 9, 197–206. [Google Scholar] [CrossRef]
- Li, R.; Wu, G.; Hao, Y.; Peng, J.; Zhai, M. Radiation degradation or modification of poly(tetrafluoroethylene) and natural polymers. In Radiation Technology for Advanced Materials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 141–182. [Google Scholar] [CrossRef]
- Furstner, R.; Barthlott, W.; Neinhuis, C.; Walzel, P. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 2005, 21, 956–961. [Google Scholar] [CrossRef]
- Wang, X.; Wang, F.; Yu, Z.; Zhang, Y.; Qi, C.; Du, L. Surface free energy and dynamic wettability of wood simultaneously treated with acidic dye and flame retardant. J. Wood Sci. 2017, 63, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Junkar, I. Interaction of cells and platelets with biomaterial surfaces treated with gaseous plasma. Adv. Biomembr. Lipid Self-Assem. 2016, 36, 25–59. [Google Scholar] [CrossRef]
- Polini, A.; Yang, F. Chapter Hydrophilicity: Physicochemical characterization of nanofiber composites. In Nanofiber Composites for Biomedical Applications, 1st ed.; Elsevier Science & Technology: Amsterdam, The Netherlands, 2017; pp. 97–115. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.; Liu, G.; Chu, F.; Chen, C.; Zhang, Y.; Tian, H.; Song, Y. Patterning a Superhydrophobic Area on a Facile Fabricated Superhydrophilic Layer Based on an Inkjet-Printed Water-Soluble Polymer Template. Langmuir 2020, 36, 9952–9959. [Google Scholar] [CrossRef]
- Beijer, N.R.M.; Nauryzgaliyeva, Z.M.; Arteaga, E.M.; Pieuchot, L.; Anselme, K.; van de Peppel, J.; Vasilevich, A.S.; Groen, N.; Roumans, N.; Hebels, D.G.A.J.; et al. Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface micropatterns. Sci. Rep. 2019, 9, 9099. [Google Scholar] [CrossRef] [Green Version]
- Fajstavrová, K.; Rimpelová, S.; Fajstavr, D.; Švorčík, V.; Slepička, P. Cell Behavior of Primary Fibroblasts and Osteoblasts on Plasma-Treated Fluorinated Polymer Coated with Honeycomb Polystyrene. Materials 2021, 14, 889. [Google Scholar] [CrossRef]
- Neznalová, K.; Fajstavr, D.; Rimpelová, S.; Slepičková Kasálková, N.; Kolská, Z.; Švorčík, V.; Slepička, P. Honeycomb-patterned poly(L-lactic) acid on plasma-activated FEP as cell culture scaffold. Polym. Deg. Stab. 2020, 181, 109370. [Google Scholar] [CrossRef]
- Slepička, P.; Peterková, L.; Rimpelová, S.; Pinker, A.; Slepičková Kasálková, N.; Kolská, Z.; Ruml, T.; Švorčík, V. Plasma activated perfluoroethylenepropylene for cytocompatibility enhancement. Polym. Degrad. Stab. 2016, 130, 277–287. [Google Scholar] [CrossRef]
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci. 2010, 123, 4195–4200. [Google Scholar] [CrossRef] [Green Version]
- Slepicka, P.; Slepickova Kasalkova, N.; Siegel, J.; Kolska, Z.; Bacakova, L.; Svorcik, V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015, 33, 1120–1129. [Google Scholar] [CrossRef]
Sample | C [%] | O [%] | F [%] |
---|---|---|---|
Pristine FEP | 45.5 | 0.0 | 54.5 |
Plasma-treated FEP | 41.9 | 1.8 | 56.3 |
HCP + 1 g PMMA (major) | 58.3 | 2.8 | 38.9 |
HCP + 2 g PMMA (major) | 74.0 | 3.6 | 22.4 |
HCP + 3 g PMMA (major) | 74.3 | 4.1 | 21.6 |
HCP + 4 g PMMA (major) | 86.4 | 7.2 | 6.4 |
HCP + 2 g PMMA (minor) | 93.6 | 6.3 | 0.1 |
HCP + 3 g PMMA (minor) | 91.0 | 6.6 | 2.4 |
HCP + 4 g PMMA (minor) | 92.9 | 7.0 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurtuková, K.; Juřicová, V.; Fajstavrová, K.; Fajstavr, D.; Slepičková Kasálková, N.; Rimpelová, S.; Švorčík, V.; Slepička, P. Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer. Polymers 2021, 13, 3663. https://doi.org/10.3390/polym13213663
Hurtuková K, Juřicová V, Fajstavrová K, Fajstavr D, Slepičková Kasálková N, Rimpelová S, Švorčík V, Slepička P. Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer. Polymers. 2021; 13(21):3663. https://doi.org/10.3390/polym13213663
Chicago/Turabian StyleHurtuková, Klaudia, Veronika Juřicová, Klára Fajstavrová, Dominik Fajstavr, Nikola Slepičková Kasálková, Silvie Rimpelová, Václav Švorčík, and Petr Slepička. 2021. "Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer" Polymers 13, no. 21: 3663. https://doi.org/10.3390/polym13213663
APA StyleHurtuková, K., Juřicová, V., Fajstavrová, K., Fajstavr, D., Slepičková Kasálková, N., Rimpelová, S., Švorčík, V., & Slepička, P. (2021). Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer. Polymers, 13(21), 3663. https://doi.org/10.3390/polym13213663