Effective End-Group Modification of Star-Shaped PNVCL from Xanthate to Trithiocarbonate Avoiding Chemical Crosslinking
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Measurements
2.3. Synthetic Methods
2.3.1. Preparation of Linear and Star PNVCL Polymers
2.3.2. Aminolysis of PNVCL Polymers Containing Xanthate End-Groups
2.3.3. Recuperation of O-Ethyl Hexylcarbamothioate
2.3.4. Transformation of (PNVCL-SH)6 Star Polymers into (PNVCL-Trithiocarbonate)6 Star Polymers
2.3.5. Chain Extension Polymerization of (PNVCL)6 Trithiocarbonate-Type Star Polymers with NIPAM
2.3.6. Functionalization of PNVCL-SH Polymers with l-Cysteine through the Formation of Disulfide Groups
3. Results and Discussion
3.1. Aminolysis of Linear and Star PNVCL Polymers Containing Xanthate End-Groups and Their Transformation into Polymers Containing Thiol End-Groups
3.2. Dh Behavior of Linear PNVCL-SH and Six-Arm (PNVCL-SH)6 Star Polymers in THF and Water
3.3. Easy and Fast Transformation of (PNVCL-Xanthate)6 Stars into (PNVCL-Trithiocarbonate)6 Star Polymers and the Synthesis of (PNVCL-b-PNIPAM)6 Block Copolymers
3.4. Chain Extension Polymerization of the (PNVCL-Trithiocarbonate)6 Star Polymers with NIPAM
3.5. Functionalization of PNVCL-SH Polymers with l-Cysteine through the Formation of Disulfide Groups
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.; Jung, H.; Park, M.J. End-Group Chemistry and Junction Chemistry in Polymer Science: Past, Present, and Future. Macromolecules 2020, 53, 746–763. [Google Scholar] [CrossRef] [Green Version]
- Scherger, M.; Räder, H.J.; Nuhn, L. Self-Immolative RAFT-Polymer End Group Modification. Macromol. Rapid Commun. 2021, 42, 2000752. [Google Scholar] [CrossRef] [PubMed]
- Harvison, M.A.; Roth, P.J.; Davis, T.P.; Lowe, A.B. End Group Reactions of RAFT-Prepared (Co)Polymers. Aust. J. Chem. 2011, 64, 992–1006. [Google Scholar] [CrossRef]
- Hess, A.; Schmidt, B.V.K.J.; Schlaada, H. Aminolysis Induced Functionalization of (RAFT) Polymer-Dithioester with Thiols and Disulfides. Polym. Chem. 2020, 11, 7677–7684. [Google Scholar] [CrossRef]
- Jana, S.; Parthiban, A.; Chai, C. Narrow Disperse Polymers using Amine Functionalized Dithiobenzoate RAFT Agent and Easy Removal of Thiocarbonyl End Group from the Resultant Polymers. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 1494–1502. [Google Scholar] [CrossRef]
- Vana, P.; Albertin, L.; Barner, L.; Davis, T.P.; Barner-Kowollik, C. Reversible Addition–Fragmentation Chain-Transfer Polymerization: Unambiguous End-Group Assignment via Electrospray Ionization Mass Spectrometry. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 4032–4037. [Google Scholar] [CrossRef]
- Li, H.; Yu, B.; Matsushima, H.; Hoyle, C.E.; Lowe, A.B. The Thiol-Isocyanate Click Reaction: Facile and Quantitative Access to ω-End-Functional Poly(N,N-diethylacrylamide) Synthesized by RAFT Radical Polymerization. Macromolecules 2009, 42, 6537–6542. [Google Scholar] [CrossRef]
- Boyer, C.; Bulmus, V.; Davis, T.P. Efficient Usage of Thiocarbonates for both the Production and the Biofunctionalization of Polymers. Macromol. Rapid Commun. 2009, 30, 493–497. [Google Scholar] [CrossRef]
- Segui, F.; Qiu, X.; Winnik, F. An Efficient Synthesis of Telechelic Poly(N-isopropylacrylamides) and its Application to the Preparation of α,ω-Dicholesteryl and α,ω-Dipyrenyl Polymers. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 314–326. [Google Scholar] [CrossRef]
- Beaupre, D.M.; Weiss, R.G. Thiol- and Disulfide-Based Stimulus-Responsive Soft Materials and Self-Assembling Systems. Molecules 2021, 26, 3332. [Google Scholar] [CrossRef]
- Goh, Y.K.; Whittaker, A.K.; Monteiro, M.J. Versatile Synthetic Approach to Reversible Crosslinked Polystyrene Networks via RAFT Polymerization. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 4150–4153. [Google Scholar] [CrossRef]
- Keddie, D.J.; Moad, G.; Rizzardo, E.; Thang, S.H. RAFT Agent Design and Synthesis. Macromolecules 2012, 45, 5321–5342. [Google Scholar] [CrossRef]
- Vogt, A.P.; Sumerlin, B.S. Temperature and redox responsive hydrogels from ABA triblock copolymers prepared by RAFT polymerization. Soft Matter 2009, 5, 2347–2351. [Google Scholar] [CrossRef]
- Zhang, B.Y.; He, W.D.; Li, L.Y.; Sun, X.I.; Li, W.T.; Zhang, K.R. Reducibly degradable hydrogels of PNIPAM and PDMAEMA: Synthesis, stimulus-response and drug release. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 3604–3612. [Google Scholar] [CrossRef]
- Wright, T.G.; Weber, W.; Pfukwa, H.; Pasch, H. Synthesis and Characterization of Four-Arm Star Polystyrene Based on a Novel Tetrafunctional RAFT Agent. Macromol. Chem. Phys. 2015, 216, 1562–1572. [Google Scholar] [CrossRef]
- Cortez Lemus, N.A.; Licea-Claverie, A. Synthesis and Characterization of “Living” Star-Shaped Poly(N-vinylcaprolactam) with Four Arms and Carboxylic Acid End Groups. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 2156–2165. [Google Scholar] [CrossRef]
- Cortez-Lemus, N.A.; Licea-Claverie, A. Preparation of a mini-library of thermo-responsive star (NVCL/NVP-VAc) polymers with tailored properties using a hexafunctional xanthate RAFT agent. Polymers 2018, 10, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siirilä, J.; Hietala, S.; Ekholm, F.S.; Tenhu, H. Glucose and Maltose Surface-Functionalized Thermoresponsive Poly(N-Vinylcaprolactam) Nanogels. Biomacromolecules 2020, 21, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Cortez-Lemus, N.A.; Castro-Hernández, A. Intrinsic viscosity of poly(N-vinylcaprolactam) with varying the architecture. J. Polym. Res. 2020, 27, 225. [Google Scholar] [CrossRef]
- Pound, G.; Eksteen, Z.; Pfukwa, R.; McKenzie, J.M.; Lange, R.F.M.; Klumperman, B. Unexpected Reactions Associated with the Xanthate-Mediated Polymerization of N-Vinylpyrrolidone. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 6575–6593. [Google Scholar] [CrossRef]
- Matioszek, D.; Dufils, P.E.; Vinas, J.; Destarac, M. Selective and Quantitative Oxidation of Xanthate End-Groups of RAFT Poly(n-butyl acrylate) Latexes by Ozonolysis. Macromol. Rapid Commun. 2015, 36, 1354–1361. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Moad, G.; Rizzardo, E. Thiocarbonylthio End Group Removal from RAFT-Synthesized Polymers by a Radical-Induced Process. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 6704–6714. [Google Scholar] [CrossRef]
- Shen, W.; Qiu, Q.; Wang, Y.; Miao, M.; Li, B.; Zhang, T.; Cao, A.; An, Z. Hydrazine as a Nucleophile and Antioxidant for Fast Aminolysis of RAFT Polymers in Air. Macromol. Rapid Commun. 2010, 31, 1444–1448. [Google Scholar] [CrossRef]
- Philipps, K.; Junkers, T.; Michels, J.J. The block copolymer shuffle in size exclusion chromatography: The intrinsic problem with using elugrams to determine chain extension success. Polym. Chem. 2021, 12, 2522–2531. [Google Scholar] [CrossRef]
- Breme, K.; Fernandez, X.; Meierhenrich, U.J.; Brevard, H.; Joulain, D. Identification of New, Odor-Active Thiocarbamates in Cress Extracts and Structure-Activity Studies on Synthesized Homologues. J. Agric. Food Chem. 2007, 55, 1932–1938. [Google Scholar] [CrossRef]
- Kakitani, A.; Yoshioka, T.; Nagatomi, Y.; Harayama, K. A rapid and sensitive analysis of dithiocarbamate fungicides using modified QuEChERS method and liquid chromatography-tandem mass spectrometry. J. Pestic. Sci. 2017, 42, 145–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortez-Lemus, N.A.; Licea-Claverie, A. Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Progr. Polym. Sci. 2016, 53, 1–51. [Google Scholar] [CrossRef]
- Easterling, C.P.; Xia, Y.; Zhao, J.; Fanucci, G.E.; Sumerlin, B.S. Block Copolymer Sequence Inversion through Photoiniferter Polymerization. ACS Macro Lett. 2019, 8, 1461–1466. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Bai, L.; Zhang, L.; Cheng, Z.; Zhu, X. Facile synthesis of poly(N-vinyl pyrrolidone) block copolymers with “more-activated” monomers by using photoinduced successive RAFT polymerization. Polym. Chem. 2020, 11, 2080–2088. [Google Scholar] [CrossRef]
- Kermagoret, A.; Mathieu, K.; Thomassin, J.M.; Fustin, C.A.; Duchêne, R.; Jérôme, C.; Detrembleur, C.; Debuigne, A. Double thermoresponsive di- and triblock copolymers based on N-vinylcaprolactam and N-vinylpyrrolidone: Synthesis and comparative study of solution behavior. Polym. Chem. 2014, 5, 6534–6544. [Google Scholar] [CrossRef]
- Góis, J.R.; Costa, J.R.; Popov, A.V.; Serra, A.C.; Coelho, J.F. Synthesis of well-defined alkyne terminated poly(N-vinylcaprolactam) with stringent control over the LCST by RAFT. RSC Adv. 2016, 6, 16996–17007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.; Shen, L.; Wu, C. LLS and FTIR Studies on the Hysteresis in Association and Dissociation of Poly(N-isopropylacrylamide) Chains in Water. Macromolecules 2006, 39, 2325–2329. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortez-Lemus, N.A.; Hermosillo-Ochoa, E.; Licea-Claverie, Á. Effective End-Group Modification of Star-Shaped PNVCL from Xanthate to Trithiocarbonate Avoiding Chemical Crosslinking. Polymers 2021, 13, 3677. https://doi.org/10.3390/polym13213677
Cortez-Lemus NA, Hermosillo-Ochoa E, Licea-Claverie Á. Effective End-Group Modification of Star-Shaped PNVCL from Xanthate to Trithiocarbonate Avoiding Chemical Crosslinking. Polymers. 2021; 13(21):3677. https://doi.org/10.3390/polym13213677
Chicago/Turabian StyleCortez-Lemus, Norma A., Eduardo Hermosillo-Ochoa, and Ángel Licea-Claverie. 2021. "Effective End-Group Modification of Star-Shaped PNVCL from Xanthate to Trithiocarbonate Avoiding Chemical Crosslinking" Polymers 13, no. 21: 3677. https://doi.org/10.3390/polym13213677
APA StyleCortez-Lemus, N. A., Hermosillo-Ochoa, E., & Licea-Claverie, Á. (2021). Effective End-Group Modification of Star-Shaped PNVCL from Xanthate to Trithiocarbonate Avoiding Chemical Crosslinking. Polymers, 13(21), 3677. https://doi.org/10.3390/polym13213677