Poly(L-lactic acid) Reinforced with Hydroxyapatite and Tungsten Disulfide Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- PLLA neat films: 0.75 g of PLLA powder was dissolved in 20 mL chloroform and mechanically mixed. Subsequently, the solution was poured onto a Teflon plate for drying in the hood with an aluminum foil cover punctuated with 10 holes.
- PLLA films with 40 wt% hydroxyapatite: 0.75 g of PLLA powder was dissolved in 15 mL chloroform; 300 mg of hydroxyapatite nanoparticles were mixed with 5 mL chloroform and 150 µL oleic acid for 30 min. The two solutions were mixed together using a magnetic stirrer for 5 min before pouring onto a Teflon plate and were then dried in the hood using an aluminum foil cover punctuated with 10 holes.
- PLLA films with 0.5 wt% INT-WS2: first, 3.8 mg INT-WS2 powder was dispersed in 5 mL ethanol for 3 min and vacuum annealed for 1.5 h at 80 °C. Next, 0.75 g of PLLA powder was dissolved in 15 mL chloroform and mechanically mixed for 5 h; then the annealed INT-WS2 were dispersed in 5 mL chloroform for 3 min. Finally, the two solutions were mixed together using a magnetic stirrer for 5 min before pouring onto a Teflon plate for drying in the hood with an aluminum foil cover punctuated with 10 holes.
- PLLA films with 40 wt% hydroxyapatite and 0.25, 0.5, and 0.75 wt% INT-WS2: first, 1.9, 3.8, or 5.6 mg of INT-WS2 powder were dispersed in 5 mL ethanol for 3 min and vacuum annealed for 1.5 h at 80 °C. Next, 0.75 g PLLA powder was dissolved in 10 mL chloroform, while 300 mg of hydroxyapatite nanoparticles were dispersed in 5 mL chloroform and 150 µL oleic acid for 30 min. Afterward, the annealed INT-WS2 were dispersed in 5 mL chloroform for 3 min. Finally, the three solutions were mixed together using a magnetic stirrer for 5 min before pouring onto a Teflon plate for drying in the hood with an aluminum foil cover punctuated with 10 holes.
2.2. Characterization Techniques
2.2.1. X-ray Diffraction
2.2.2. High-Resolution Scanning Electron Microscopy (HR-SEM)
2.2.3. Tensile Testing
2.2.4. Micro-Hardness Test
2.2.5. Nanomechanical Testing
2.2.6. Differential Scanning Calorimeter (DSC)
2.2.7. Micro-Raman Spectroscopy
2.2.8. Fourier Transform Infrared Spectroscopy (FTIR)
3. Results and Discussion
3.1. X-ray Diffraction
3.2. High-Resolution Scanning Electron Microscopy (HR-SEM)
3.3. Tensile Test
3.4. Micro-Hardness Test
3.5. Nanomechanical Testing (Nanoindentation Tests)
3.6. Thermal Properties of PLLA Film and HA/INT-WS2/PLLA Nanocomposites by DSC
3.7. Micro-Raman Spectroscopy
3.8. FTIR Spectroscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Genovese, L.; Soccio, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Salatelli, E.; Balestra, F.; Munari, A. Design of biobased PLLA triblock copolymers for sustainable food packaging: Thermo-mechanical properties, gas barrier ability and compostability. Eur. Polym. J. 2017, 95, 289–303. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Chu, C.; She, Y.; Jiang, S.; Zhai, L.; Jiang, S.; Li, X. Diffusion and antibacterial properties of nisin-loaded chitosan/poly (l-lactic acid) towards development of active food packaging film. Food Bioprocess Technol. 2015, 8, 1657–1667. [Google Scholar] [CrossRef]
- El-hadi, A.M. Increase the elongation at break of poly (lactic acid) composites for use in food packaging films. Sci. Rep. 2017, 7, 46767. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, K.; Di Luccio, T.; Ailianou, A.; Kossuth, M.B.; Oberhauser, J.P.; Kornfield, J.A. Crimping-induced structural gradients explain the lasting strength of poly L-lactide bioresorbable vascular scaffolds during hydrolysis. Proc. Natl. Acad. Sci. USA 2018, 115, 10239–10244. [Google Scholar] [CrossRef] [Green Version]
- Ailianou, A.; Ramachandran, K.; Kossuth, M.B.; Oberhauser, J.P.; Kornfield, J.A. Multiplicity of morphologies in poly (L-lactide) bioresorbable vascular scaffolds. Proc. Natl. Acad. Sci. USA 2016, 113, 11670–11675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocher, L.; Ylitalo, A.S.; Di Luccio, T.; Miscioscia, R.; De Filippo, G.; Pandolfi, G.; Villani, F.; Zak, A.; Menary, G.H.; Lennon, A.B.; et al. Interaction of Poly L-lactide and tungsten disulfide nanotubes studied by in Situ X-ray scattering during expansion of PLLA/WS2 NT nanocomposite tubes. Polymers 2021, 13, 1764. [Google Scholar] [CrossRef]
- Wan, P.; Yuan, C.; Tan, L.L.; Li, Q.; Yang, K. Fabrication and evaluation of bioresorbable PLLA/magnesium and PLLA/magnesium fluoride hybrid composites for orthopedic implants. Compos. Sci. Technol. 2014, 98, 36–43. [Google Scholar] [CrossRef]
- Díaz, E.; Molpeceres, A.L.; Sandonis, I.; Puerto, I. PLLA/nHA composite films and scaffolds for medical Implants: In vitro degradation, thermal and mechanical properties. J. Inorg. Organomet. Polym. Mater. 2018, 29, 121–131. [Google Scholar] [CrossRef]
- Davachi, S.M.; Kaffashi, B.; Torabinejad, B.; Zamanian, A. In-vitro investigation and hydrolytic degradation of antibacterial nanocomposites based on PLLA/triclosan/nano-hydroxyapatite. Polymer 2016, 83, 101–110. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, B.; Yang, G.; Gauthier, M. Poly(lactic acid)-based biomaterials: Synthesis, modification and applications. In Biomedical Science, Engineering and Technology; Ghista, D.N., Ed.; InTech: London, UK, 2012; Volume 11, pp. 247–282. [Google Scholar]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, K.; Nakajima, H. Metallic scaffolds for bone regeneration. Materials 2009, 2, 790–832. [Google Scholar] [CrossRef]
- Tariq, U.; Haider, Z.; Chaudhary, K.; Hussain, R.; Ali, J. Calcium to phosphate ratio measurements in calcium phosphates using libs. J. Phys. Conf. Ser. 2018, 1027, 012015. [Google Scholar] [CrossRef]
- Kong, Y.-M.; Kim, D.-H.; Kim, H.-E.; Heo, S.-J.; Koak, J.-Y. Hydroxyapatite-based composite for dental implants: An in vivo removal torque experiment. J. Biomed. Mater. Res. 2002, 63, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Shikinami, Y. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. basic characteristics. Biomaterials 1999, 20, 859–877. [Google Scholar] [CrossRef]
- Takayama, T.; Todo, M. Improvement of mechanical properties of hydroxyapatite particle-filled poly(L-lactide) biocomposites using lysine tri-isocyanate. J. Mater. Sci. 2009, 44, 5017–5020. [Google Scholar] [CrossRef]
- Chua, P.S.; Piggott, M.R. The glass fibre—Polymer interface: I—Theoretical consideration for single fibre pull-out tests. Compos. Sci. Technol. 1985, 22, 33–42. [Google Scholar] [CrossRef]
- Sedova, A.; Khodorov, S.; Ehre, D.; Achrai, B.; Wagner, H.D.; Tenne, R.; Dodiuk, H.; Kenig, S. Dielectric and electrical properties of WS2 nanotubes/epoxy composites and their use for stress monitoring of structures. J. Nanomater. 2017, 2017, 4838095. [Google Scholar] [CrossRef] [Green Version]
- Ke, S.; Lai, Y.; Zhou, T.; Li, L.; Wang, Y.; Ren, L.; Ye, S. Molybdenum disulfide nanoparticles resist oxidative stress-mediated impairment of autophagic flux and mitigate endothelial cell senescence and angiogenic dysfunctions. ACS Biomater. Sci. Eng. 2018, 4, 663–674. [Google Scholar] [CrossRef]
- Rashkow, J.T.; Talukdar, Y.; Lalwani, G.; Sitharaman, B. Interactions of 1D- and 2D-layered inorganic nanoparticles with fibroblasts and human mesenchymal stem cells. Nanomedicine 2015, 10, 1693–1706. [Google Scholar] [CrossRef] [Green Version]
- Pardo, M.; Shuster-Meiseles, T.; Levin-Zaidman, S.; Rudich, A.; Rudich, Y. Low cytotoxicity of inorganic nanotubes and fullerene-like nanostructures in human bronchial epithelial cells: Relation to inflammatory gene induction and antioxidant response. Environ. Sci. Technol. 2014, 48, 3457–3466. [Google Scholar] [CrossRef]
- Fojtů, M.; Teo, W.Z.; Pumera, M. Environmental impact and potential health risks of 2D nanomaterials. Environ. Sci. Nano 2017, 4, 1617–1633. [Google Scholar] [CrossRef]
- Kaplan-Ashiri, I.; Cohen, S.R.; Gartsman, K.; Ivanovskaya, V.; Heine, T.; Seifert, G.; Wiesel, I.; Wagner, H.D.; Tenne, R. On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc. Natl. Acad. Sci. USA 2006, 103, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Jarząbek, D.M. The impact of weak interfacial bonding strength on mechanical properties of metal matrix–ceramic reinforced composites. Compos. Struct. 2018, 201, 352–362. [Google Scholar] [CrossRef]
- Barber, A.H.; Cohen, S.R.; Kenig, S.; Wagner, H.D. Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix. Compos. Sci. Technol. 2004, 64, 2283–2289. [Google Scholar] [CrossRef]
- Rodricks, C.W.; Greenfeld, I.; Wagner, H.D. Polymer beads as interfacial obstacles in fibre composites. Compos. Sci. Technol. 2021, 210, 108793. [Google Scholar] [CrossRef]
- Kumar, V.B.; Harel, Y.; Ben-Ishay, R.; Lellouche, J.P.; Gedanken, A. Functionalization of WS2 nanotubes with fluorescent C-dots and conductive polythiophenes. Macromol. Chem. Phys. 2019, 220, 1800476. [Google Scholar] [CrossRef]
- Palomar, Q.; Gondran, C.; Lellouche, J.-P.; Cosnier, S.; Holzinger, M. Functionalized tungsten disulfide nanotubes for dopamine and catechol detection in a tyrosinase-based amperometric biosensor design. J. Mater. Chem. B 2020, 8, 3566–3573. [Google Scholar] [CrossRef] [PubMed]
- Naffakh, M.; Marco, C. Isothermal crystallization kinetics and melting behavior of Poly(L-lactic acid)/WS2 inorganic nanotube nanocomposites. J. Mater. Sci. 2015, 50, 6066–6074. [Google Scholar] [CrossRef]
- Naffakh, M.; Marco, C.; Ellis, G.; Cohen, S.R.; Laikhtman, A.; Rapoport, L.; Zak, A. Novel poly(3-hydroxybutyrate) nanocomposites containing WS2 inorganic nanotubes with improved thermal, mechanical and tribological properties. Mater. Chem. Phys. 2014, 147, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Otorgust, G.; Idelevich, A.; Regev, O.; Lapsker, I.; Lewitus, D.Y.; Zak, A. Reinforcement of poly (methyl methacrylate) by WS2 nanotubes towards antiballistic applications. Compos. Sci. Technol. 2021, 207, 108736. [Google Scholar] [CrossRef]
- Zohar, E.; Baruch, S.; Shneider, M.; Dodiuk, H.; Kenig, S.; Tenne, R.; Wagner, H.D. The effect of WS2 nanotubes on the properties of epoxy-based nanocomposites. J. Adhes. Sci. Technol. 2011, 25, 1603–1617. [Google Scholar] [CrossRef]
- Šupová, M. Problem of hydroxyapatite dispersion in polymer matrices: A review. J. Mater. Sci. Mater. Med. 2009, 20, 1201–1213. [Google Scholar] [CrossRef]
- Kim, H.-W.; Kim, H.-E. Nanofiber generation of hydroxyapatite and fluor-hydroxyapatite bioceramics. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 77B, 323–328. [Google Scholar] [CrossRef]
- Naffakh, M.; Díez-Pascual, A.M. WS2 inorganic nanotubes reinforced Poly(L-lactic acid)/hydroxyapatite hybrid composite biomaterials. RSC Adv. 2015, 5, 65514–65525. [Google Scholar] [CrossRef]
- Shalom, H.; Sui, X.M.; Elianov, O.; Brumfeld, V.; Rosentsveig, R.; Pinkas, I.; Feldman, Y.; Kampf, N.; Wagner, H.D.; Lachman, N.; et al. Nanocomposite of Poly(L-lactic acid) with inorganic nanotubes of WS2. Lubricants 2019, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Stares, S.L.; Fredel, M.C.; Aragones, A.; Gutmanas, E.Y.; Gotman, I.; Greil, P.; Travitzky, N. PLLA/HA composite laminates. Adv. Eng. Mater. 2013, 15, 1122–1124. [Google Scholar] [CrossRef]
- Albano, C.; González, G.; Palacios, J.; Karam, A.; Covis, M. PLLA-HA vs. PLGA-HA characterization and comparative analysis. Polym. Compos. 2013, 34, 1433–1442. [Google Scholar] [CrossRef]
- Chithaiah, P.; Ghosh, S.; Idelevich, A.; Rovinsky, L.; Livneh, T.; Zak, A. Solving the “MoS2 nanotubes” synthetic enigma and elucidating the route for their catalyst-free and scalable production. ACS Nano 2020, 14, 3004–3016. [Google Scholar] [CrossRef]
- Pawley, G.S. Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 1981, 14, 357–361. [Google Scholar] [CrossRef]
- Li, X.; Bhushan, B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 2002, 48, 11–36. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Carrasco, F.; Pagès, P.; Gámez-Pérez, J.; Santana, O.O.; Maspoch, M.L. Processing of Poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 2010, 95, 116–125. [Google Scholar] [CrossRef]
- Ero-Phillips, O.; Jenkins, M.; Stamboulis, A. Tailoring crystallinity of electrospun PLLA fibers by control of electrospinning parameters. Polymers 2012, 4, 1331–1348. [Google Scholar] [CrossRef] [Green Version]
- Naffakh, M.; Marco, C.; Ellis, G. Development of novel melt-processable biopolymer nanocomposites based on Poly(L-lactic acid) and WS2 inorganic nanotubes. CrystEngComm 2014, 16, 5062. [Google Scholar] [CrossRef] [Green Version]
- Wichmann, M.H.G.; Schulte, K.; Wagner, H.D. On nanocomposite toughness. Compos. Sci. Technol. 2008, 68, 329–331. [Google Scholar] [CrossRef]
- Johnsen, B.B.; Kinloch, A.J.; Mohammed, R.D.; Taylor, A.C.; Sprenger, S. Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 2007, 48, 530–541. [Google Scholar] [CrossRef]
- Shi, X.; Wang, S.; Wen, S.; Shen, M.; Guo, R.; Cao, X.; Wang, J. Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: Synthesis, characterization, and in vitro toxicity assay. Int. J. Nanomed. 2011, 6, 3449–3459. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Dong, B.; Huang, Y.; Liu, L.; Yan, F.-Y.; Li, H.-L. A study on carbon nanotubes reinforced Poly(methyl methacrylate) nanocomposites. Mater. Lett. 2005, 59, 2128–2132. [Google Scholar] [CrossRef]
- Nyanor, P.; El-Kady, O.; Yehia, H.M.; Hamada, A.S.; Nakamura, K.; Hassan, M.A. Effect of carbon nanotube (CNT) content on the hardness, wear resistance and thermal expansion of in-situ reduced graphene oxide (rGO)-Reinforced aluminum matrix composites. Met. Mater. Int. 2019, 27, 1315–1326. [Google Scholar] [CrossRef]
- Shneider, M.; Dodiuk, H.; Tenne, R.; Kenig, S. Nanoinduced morphology and enhanced properties of epoxy containing tungsten disulfide nanoparticles. Polym. Eng. Sci. 2013, 53, 2624–2632. [Google Scholar] [CrossRef]
- Zamiri, A.; De, S. Mechanical properties of hydroxyapatite single crystals from nanoindentation data. J. Mech. Behav. Biomed. Mater. 2011, 4, 146–152. [Google Scholar] [CrossRef] [Green Version]
- George, W. Effect of nucleating agents on physical-mechanical properties. In Handbook of Nucleating Agents; Elsevier: Amsterdam, The Netherlands, 2016; pp. 205–215. ISBN 978-1-895198-93-5. [Google Scholar]
- Zia, Q.; Androsch, R.; Radusch, H.-J.; Piccarolo, S. Morphology, reorganization and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer 2006, 47, 8163–8172. [Google Scholar] [CrossRef]
- Mollova, A.; Androsch, R.; Mileva, D.; Gahleitner, M.; Funari, S.S. Crystallization of isotactic polypropylene containing beta-phase nucleating agent at rapid cooling. Eur. Polym. J. 2013, 49, 1057–1065. [Google Scholar] [CrossRef] [Green Version]
- Starkweather, H.W.; Moore, G.E.; Hansen, J.E.; Roder, T.M.; Brooks, R.E. Effect of crystallinity on the properties of nylons. J. Polym. Sci. 1956, 21, 189–204. [Google Scholar] [CrossRef]
- Stuart, B.H.; Briscoe, B.J. The effect of crystallinity on the scratch hardness of Poly(ether ether ketone). Polymer 1996, 37, 3819–3824. [Google Scholar] [CrossRef]
- Dos Santos, B.B.; Pita, V.J.; da Costa, M.F. Characterization of properties of Poly(vinylidene fluoride) using instrumented microindentation test. Macromol. Symp. 2020, 394, 2000136. [Google Scholar] [CrossRef]
- Naik, S.N.; Walley, S.M. The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. J. Mater. Sci. 2019, 55, 2661–2681. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Dixit, M.; Baboo, M.; Sharma, K.; Saxena, N.S. Thickness-dependent mechanical behaviour of aluminium-coated polyethylene terephthalate (pet) films. Polym.-Plast. Technol. Eng. 2009, 48, 1333–1337. [Google Scholar] [CrossRef]
- Suzuki, T.; Ei, A.; Takada, Y.; Uehara, H.; Yamanobe, T.; Takahashi, K. Modification of physical properties of poly(L-lactic acid) by addition of methyl-β-cyclodextrin. Beilstein J. Org. Chem. 2014, 10, 2997–3006. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, T.; Sato, H.; Murakami, R.; Zhang, J.; Noda, I.; Ochiai, S.; Ozaki, Y. Raman microspectroscopy study of structure, dispersibility, and crystallinity of poly(hydroxybutyrate)/Poly(L-lactic Acid) blends. Polymer 2006, 47, 3132–3140. [Google Scholar] [CrossRef]
- Ciobanu, C.S.; Iconaru, S.L.; Massuyeau, F.; Constantin, L.V.; Costescu, A.; Predoi, D. Synthesis, structure, and luminescent properties of europium-doped hydroxyapatite nanocrystalline powders. J. Nanomater. 2012, 2012, 61. [Google Scholar] [CrossRef] [Green Version]
- Viršek, M.; Jesih, A.; Milošević, I.; Damnjanović, M.; Remškar, M. Raman scattering of the MoS2 and WS2 single nanotubes. Surf. Sci. 2007, 601, 2868–2872. [Google Scholar] [CrossRef]
- Masanari, O. Hyper-Raman spectroscopy of polar liquids excited at 1064 nm: Acetone, acetonitrile, chloroform, and dimethyl sulfoxide. J. Chem. Phys. 2020, 152, 174202. [Google Scholar]
- Gonçalves, C.; Gonçalves, I.; Magalhães, F.; Pinto, A. Poly(lactic acid) composites containing carbon-based nanomaterials: A review. Polymers 2017, 9, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Li, H.; Wang, C.; Yuan, D.; Stubbs, L.P.; He, C. The effect of residual solvent N,N′-Dimethylformamide on the curing reaction and mechanical properties of epoxy and lignin epoxy composites. Macromol. Chem. Phys. 2016, 217, 1065–1073. [Google Scholar] [CrossRef]
- Fugolin, A.P.; Dobson, A.; Ferracane, J.L.; Pfeifer, C.S. Effect of residual solvent on performance of acrylamide-containing dental materials. Dent. Mater. 2019, 35, 1378–1387. [Google Scholar] [CrossRef]
- Grinberg, O.; Deng, S.; Zussman, E.; Livneh, T.; Zak, A. Raman scattering from single WS2 nanotubes in stretched PVDF electrospun fibers. Phys. Chem. Chem. Phys. 2017, 19, 18443–18451. [Google Scholar] [CrossRef] [PubMed]
- De Gelder, J.; De Gussem, K.; Vandenabeele, P.; Moens, L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007, 38, 1133–1147. [Google Scholar] [CrossRef]
- Thangaraju, E.; Srinivasan, N.T.; Kumar, R.; Sehgal, P.K.; Rajiv, S. Fabrication of electrospun poly L-lactide and curcumin loaded poly L-lactide nanofibers for drug delivery. Fibers Polym. 2012, 13, 823–830. [Google Scholar] [CrossRef]
- Murugesan, M.; Krishnamurthy, V.; Hebalkar, N.; Devanesan, M.; Nagamony, P.; Palaniappan, M.; Krishnaswamy, S.; Yuan, A. Nano-hydroxyapatite (HAp) and hydroxyapatite/platinum (HAp/Pt) core shell nanorods: Development, structural study, and their catalytic activity. Can. J. Chem. Eng. 2020, 99, 268–280. [Google Scholar] [CrossRef]
- O’Neal, K.R.; Cherian, J.G.; Zak, A.; Tenne, R.; Liu, Z.; Musfeldt, J.L. High pressure vibrational properties of WS2 nanotubes. Nano Lett. 2016, 16, 993–999. [Google Scholar] [CrossRef]
- Shalom, H.; Kapishnikov, S.; Brumfeld, V.; Naveh, N.; Tenne, R.; Lachman, N. Strong, Tough and bio-degradable polymer-based 3D-ink for fused filament fabrication (FFF) using WS2 nanotubes. Sci. Rep. 2020, 10, 8892. [Google Scholar] [CrossRef]
- Kalhapure, R.S.; Akamanchi, K.G. A novel biocompatible bicephalous dianionic surfactant from oleic acid for solid lipid nanoparticles. Colloids Surf. B Biointerfaces 2013, 105, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, J.; Kim, S.-K. Nano-hydroxyapatite composite biomaterials for bone tissue engineering—A review. J. Biomed. Nanotechnol. 2014, 10, 3124–3140. [Google Scholar] [CrossRef]
- Tang, D.-M.; Wei, X.; Wang, M.-S.; Kawamoto, N.; Bando, Y.; Zhi, C.; Mitome, M.; Zak, A.; Tenne, R.; Golberg, D. Revealing the anomalous tensile properties of WS2 nanotubes by in situ transmission electron microscopy. Nano Lett. 2013, 13, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Loffredo, F.; Tammaro, L.; Di Luccio, T.; Borriello, C.; Villani, F.; De Vito, S.; Ramachandran, K.; Kornfield, J.A. Effect of tungsten disulfide nanotubes on crystallization of polylactide under uniaxial deformation and annealing. Funct. Compos. Mater. 2021, 2, 3. [Google Scholar] [CrossRef]
- Tammaro, L.; Di Luccio, T.; Borriello, C.; Loffredo, F.; Ramachandran, K.; Villani, F.; Di Benedetto, F.; Schiller, T.; Minarini, C.; Kornfield, J.A. Effect of tungsten disulfide (WS2) nanotubes on structural, morphological and mechanical properties of poly(L-lactide) (PLLA) films. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 1981, p. 020073. [Google Scholar]
- Samantaray, P.K.; Little, A.; Haddleton, D.M.; McNally, T.; Tan, B.; Sun, Z.; Huang, W.; Ji, Y.; Wan, C. Poly(glycolic acid) (PGA): A versatile building block expanding high performance and sustainable bioplastic applications. Green Chem. 2020, 22, 4055–4081. [Google Scholar] [CrossRef]
- Naffakh, M. Biopolymer nanocomposite materials based on Poly(L-lactic acid) and inorganic fullerene-like WS2 nanoparticles. Polymers 2021, 13, 2947. [Google Scholar] [CrossRef] [PubMed]
Sample Type | Degree of Crystallinity (%) | Average Crystallite Size (Å) | ||
---|---|---|---|---|
WPF | Scherrer | WPF | ||
PLLA | HA | |||
PLLA film | 32.8 ± 0.9 | 170 | 171 ± 2 | – |
PLLA film with 40 wt% HA | 37.1 ± 3.0 | 130 | 128 ± 5 | 291 ± 18 |
PLLA film with 0.5 wt% INT-WS2 | 33.2 ± 1.6 | 165 | 162 ± 2 | – |
PLLA film with 40 wt% HA and 0.25 wt% INT-WS2 | 38.2 ± 2.5 | 145 | 145 ± 5 | 331 ± 20 |
PLLA film with 40 wt% HA and 0.5 wt% INT-WS2 | 42.7 ± 2.7 | 140 | 144 ± 4 | 353 ± 19 |
PLLA film with 40 wt% HA and 0.75 wt% INT-WS2 | 42.1 ± 2.2 | 150 | 145 ± 4 | 342 ± 16 |
Sample Type | Young’s Modulus (GPa) | Yield Strength (MPa) | Strain at Failure (%) | Toughness (MPa) |
---|---|---|---|---|
PLLA film | 1.55 ± 0.15 | 31.0 ± 2.4 | 2.7 ± 1.3 | 0.6 ± 0.2 |
PLLA film with 40 wt% HA | 2.4 ± 0.1 | 26.7 ± 1.1 | 2.1 ± 0.1 | 0.3 ± 0.1 |
PLLA film with 0.5 wt% INT-WS2 | 2.25 ± 0.2 | 44.6 ± 4.65 | 6.8 ± 1.0 | 2.4 ± 0.5 |
PLLA film with 40 wt% HA and 0.25 wt% INT-WS2 | 2.7 ± 0.4 | 42.5 ± 5.8 | 7.3 ± 1.0 | 2.6 ± 0.3 |
PLLA film with 40 wt% HA and 0.5 wt% INT-WS2 | 3.8 ± 0.5 | 62.7 ± 1.2 | 3.2 ± 1.6 | 1.4 ± 0.7 |
PLLA film with 40 wt% HA and 0.75 wt% INT-WS2 | 2.7 ± 0.35 | 39.6 ± 4.9 | 5.8 ± 0.7 | 1.8 ± 0.25 |
Sample Type | Young’s Modulus (GPa) | Hardness (GPa) |
---|---|---|
PLLA film | 3.3 ± 0.4 | 0.16 ± 0.05 |
PLLA film with 40 wt% HA | 4.9 ± 0.7 | 0.24 ± 0.06 |
PLLA film with 0.5 wt% INT-WS2 | 3.4 ± 0.7 | 0.18 ± 0.08 |
PLLA film with 40 wt% HA and 0.25 wt% INT-WS2 | 5.6 ± 1.2 | 0.36 ± 0.15 |
PLLA film with 40 wt% HA and 0.5 wt% INT-WS2 | 4.6 ± 0.8 | 0.25 ± 0.08 |
PLLA film with 40 wt% HA and 0.75 wt% INT-WS2 | 4.3 ± 0.6 | 0.22 ± 0.07 |
Sample Type | Tg (°C) | Tcc (°C) | ΔHcc (J/g) | Tm (°C) | ΔHm (J/g) | Tc (°C) | ΔHc (J/g) | Xc (%) | (1 − λ)c (%) |
---|---|---|---|---|---|---|---|---|---|
PLLA film | 61.5 | 114.1 | 32.1 | 179.6 | 39.1 | 101.6 | 2.0 | 7.5 | 2.2 |
PLLA film with 40 wt% HA | 62.7 | 93.6 | 3.2 | 177.6 | 33.2 | 96.9 | 5.6 | 32.2 | 6.0 |
PLLA film with 0.5 wt% INT-WS2 | 66.7 | 107.9 | 3.1 | 181.7 | 34.3 | 116.9 | 34.2 | 33.5 | 36.7 |
PLLA film with 40 wt% HA and 0.25 wt% INT-WS2 | 62.9 | 93.5 | 4.8 | 177.3 | 31.1 | 97.2 | 8.5 | 28.3 | 9.2 |
PLLA film with 40 wt% HA and 0.5 wt% INT-WS2 | 62.9 | 92.6 | 2.5 | 177.2 | 32.6 | 98.3 | 5.5 | 32.3 | 5.9 |
PLLA film with 40 wt% HA and 0.75 wt% INT-WS2 | 62.6 | 95.2 | 2.4 | 177.0 | 32.3 | 99.3 | 5.0 | 32.1 | 5.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golan, O.; Shalom, H.; Kaplan-Ashiri, I.; Cohen, S.R.; Feldman, Y.; Pinkas, I.; Ofek Almog, R.; Zak, A.; Tenne, R. Poly(L-lactic acid) Reinforced with Hydroxyapatite and Tungsten Disulfide Nanotubes. Polymers 2021, 13, 3851. https://doi.org/10.3390/polym13213851
Golan O, Shalom H, Kaplan-Ashiri I, Cohen SR, Feldman Y, Pinkas I, Ofek Almog R, Zak A, Tenne R. Poly(L-lactic acid) Reinforced with Hydroxyapatite and Tungsten Disulfide Nanotubes. Polymers. 2021; 13(21):3851. https://doi.org/10.3390/polym13213851
Chicago/Turabian StyleGolan, Ofek, Hila Shalom, Ifat Kaplan-Ashiri, Sidney R. Cohen, Yishay Feldman, Iddo Pinkas, Rakefet Ofek Almog, Alla Zak, and Reshef Tenne. 2021. "Poly(L-lactic acid) Reinforced with Hydroxyapatite and Tungsten Disulfide Nanotubes" Polymers 13, no. 21: 3851. https://doi.org/10.3390/polym13213851
APA StyleGolan, O., Shalom, H., Kaplan-Ashiri, I., Cohen, S. R., Feldman, Y., Pinkas, I., Ofek Almog, R., Zak, A., & Tenne, R. (2021). Poly(L-lactic acid) Reinforced with Hydroxyapatite and Tungsten Disulfide Nanotubes. Polymers, 13(21), 3851. https://doi.org/10.3390/polym13213851