Crown Ether-Immobilized Cellulose Acetate Membranes for the Retention of Gd (III)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navarro, R.; Saucedo, I.; Nnez, A.; Avila, M.; Guibal, E. Cadmium extraction from hydrochloric acid solutions using Amberlite XAD-7 impregnated with Cyanex 921 (tri-octyl phosphine oxide). React. Funct. Polym. 2008, 68, 557–571. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; Zhao, Z.; Dong, Y.; Sun, X. The novel extraction process based on CYANEX® 572 for separating heavy rare earths from ion-adsorbed deposit. Sep. Purif. Technol. 2015, 151, 303. [Google Scholar] [CrossRef]
- De Jong, N.; Draye, M.; Favre-Réguillon, A.; LeBuzit, G.; Cote, G.; Foos, J. Lanthanum (III) and gadolinium (III) separation by cloud point extraction. J. Colloid Interf. Sci. 2005, 291, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Matsumiya, H.; Inoue, H.; Hiraide, M. Separation of Gd–humic complexes and Gd-based magnetic resonance imaging contrast agent in river water with QAE-SephadexA-25 for the fractionation analysis. Talanta 2014, 128, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Croft, C.F.; Inês, M.; Almeida, G.S.; Cattrall, R.W.; Kolev, S.D. Separation of lanthanum (III), gadolinium (III) and ytterbium (III) from sulfuric acid solutions by using a polymer inclusion membrane. J. Membr. Sci. 2018, 545, 259–265. [Google Scholar] [CrossRef]
- Zhao, J.; Bai, Y.; Li, D.; Li, W. Extraction of rare earths (III) from nitrate medium with with 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5. Sep. Sci. Technol. 2006, 41, 3047–3063. [Google Scholar] [CrossRef]
- Davoodi-Nasab, P.; Rahbar-Kelishami, A.; Safdari, J.; Abolghasemi, H. Evaluation of the emulsion liquid membrane performance on the removal of gadolinium from acidic solutions. J. Mol. Liq. 2018, 262, 97–103. [Google Scholar] [CrossRef]
- Costa, A.F.; Van Der Pol, C.B.; Maralani, P.J.; McInnes, M.D.; Shewchuk, J.R.; Verma, R.; Hurrell, C.; Schieda, N. Gadolinium deposition in the brain: A systematic review of existing guidelines and policy statement issued by the canadian association of radiologists. Can. Assoc. Radiol. J. 2018, 69, 373–382. [Google Scholar] [CrossRef]
- Abujudeh, H.H.; Kosaraju, V.K.; Kaewlai, R. Acute adverse reactions to gadopentetate dimeglumine and gadobenate dimeglumine: Experience with 32,659 injections. Am. J. Roentgenol. 2010, 194, 430–434. [Google Scholar] [CrossRef]
- Dalle, H.M.; de Mattos, J.R.L.; Dias, M.S. Enriched gadolinium burnable poison for PWR fuel—Monte Carlo burnup simulations of reactivity, Chapter 4. In Current Research in Nuclear Reactor Technology in Brazil and Worldwide; Intech Publishers: Rijeka, Croatia, 2013; pp. 73–89. [Google Scholar]
- Kanda, T.; Fukusato, T.; Matsuda, M.; Toyoda, K.; Oba, H.; Kotoku, J.; Haruyama, T.; Kitajima, K.; Furui, S. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: Evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 2015, 276, 228–232. [Google Scholar] [CrossRef]
- Murata, N.; Gonzalez-Cuyar, L.F.; Murata, K. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: Preliminary results from 9 patients with normal renal function. Investig. Radiol. 2016, 51, 447–453. [Google Scholar] [CrossRef]
- Elsofany, E. Removal of lanthanum and gadolinium from nitrate medium using Aliquat-336 impregnated onto Amberlite XAD-4. J. Hazard. Mater. 2008, 153, 948–954. [Google Scholar] [CrossRef]
- Rufus, A.; Kumar, P.S.; Jeena, K.; Velmurugan, S. Removal of gadolinium, a neutron poison from the moderator system of nuclear reactors. J. Hazard. Mater. 2018, 342, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Tadjarodi, A.; Jalalat, V.; Zare-Dorabei, R. Adsorption of La (III) in aqueous systems by N-(2-hydroxyethyl) salicylaldimine-functionalized mesoporous silica. Mater. Res. Bull. 2015, 61, 113–119. [Google Scholar] [CrossRef]
- Zare-Dorabei, R.; Jalalat, V.; Tadjarodi, A. Central composite design optimization of Ce (III) ion removal from aqueous solution using modified SBA-15 mesoporous silica. New J. Chem. 2016, 40, 5128–5134. [Google Scholar] [CrossRef]
- Dashtian, K.; Zare-Dorabei, R. Synthesis and characterization of functionalized mesoporous SBA-15 decorated with Fe3O4 nanoparticles for removal of Ce (III) ions from aqueous solution: ICP–OES detection and central composite design optimization. J. Colloid Interface Sci. 2017, 494, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Serbanescu, O.S.; Pandele, A.; Miculescu, F.; Voicu, Ş.I. Synthesis and characterization of cellulose acetate membranes with self-indicating properties by changing the membrane surface color for separation of Gd (III). Coatings 2020, 10, 468. [Google Scholar] [CrossRef]
- Ulbricht, M. Advanced functional polymeric membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef] [Green Version]
- Thakur, V.; Voicu, S.I. Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydr. Polym. 2016, 146, 148–165. [Google Scholar] [CrossRef]
- Oprea, M.; Voicu, S.I. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr. Polym. 2020, 247, 116683. [Google Scholar] [CrossRef]
- Oprea, M.; Voicu, S.I. Recent advances in applications of cellulose derivatives-based composite membranes with hydroxyapatite. Materials 2020, 13, 2481. [Google Scholar] [CrossRef]
- Oprea, M.; Voicu, S.I. Cellulose composites with graphene for tissue engineering applications. Materials 2020, 13, 5347. [Google Scholar] [CrossRef]
- Pandele, A.M.; Constantinescu, A.; Radu, I.C.; Miculescu, F.; Voicu, S.I.; Ciocan, L.T. Synthesis and characterization of PLA microstructured hydroxyapatite composite films. Materials 2020, 13, 274. [Google Scholar] [CrossRef] [Green Version]
- Muhulet, A.; Tuncel, C.; Miculescu, F.; Pandele, A.M.; Bobirica, C.; Orbeci, C.; Bobirica, L.; Palla Papavlu, A.; Voicu, S.I. Synthesis and characterization of polysulfone-TiO2 doped MWCNT composite membranes by sonochemical method. Appl. Phys. A 2020, 126, 233. [Google Scholar] [CrossRef]
- Chiulan, I.; Heggset, E.B.; Voicu, S.I.; Chinga-Carrasco, G. Photopolymerization of bio-based polymers in a biomedical engineering perspective. Biomacromolecules 2021, 22, 1795–1814. [Google Scholar] [CrossRef]
- Voicu, S.I.; Dobrica, A.; Sava, S.; Ivan, A.; Naftanaila, L. Cationic surfactants-controlled geometry and dimensions of polymeric membrane pores. J. Optoelectron. Adv. Mater. 2012, 14, 923–928. [Google Scholar]
- Raicopol, M.D.; Andronescu, C.; Voicu, S.I.; Vasile, E.; Pandele, A.M. Cellulose acetate/layered double hydroxide adsorptive membranes for efficient removal of pharmaceutical environmental contaminants. Carbohydr. Polym. 2019, 214, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Voicu, S.I.; Pandele, M.A.; Vasile, E.; Rughinis, R.; Crica, L.; Pilan, L.; Ionita, M. The impact of sonication time through polysulfone-graphene oxide composite films properties. Dig. J. Nanomater. Bios. 2013, 8, 1389–1394. [Google Scholar]
- Rana, A.K.; Gupta, V.K.; Saini, A.K.; Voicu, S.I.; Abdellattifaand, M.H.; Thakur, V.K. Water desalination using nanocelluloses/cellulose derivatives based membranes for sustainable future. Desalination 2021, 520, 115359. [Google Scholar] [CrossRef]
- Voicu, S.I.; Thakur, V.K. Graphene-based composite membranes for nanofiltration: Performances and future perspectives. Emerg. Mater. 2021, 1–13. [Google Scholar] [CrossRef]
- Pandele, A.M.; Iovu, H.; Orbeci, C.; Tuncel, C.; Miculescu, F.; Nicolescu, A.; Deleanu, C.; Voicu, S.I. Surface Modified Cellulose Acetate Membranes for the Reactive Retention of Tetracycline. Sep. Purif. Technol. 2020, 249, 117145. [Google Scholar] [CrossRef]
- Serbanescu, O.S.; Voicu, S.I.; Thakur, V.K. Polysulfone functionalized membranes: Properties and challenges. Mater. Today Chem. 2020, 17, 100302. [Google Scholar] [CrossRef]
- Dumitriu, C.; Voicu, S.I.; Muhulet, A.; Nechifor, G.; Popescu, S.; Ungureanu, C.; Carja, A.; Miculescu, F.; Trusca, R.; Pirvu, C. Cellulose acetate-titanium dioxide nanotubes membrane fraxiparinized through polydopamine. Carbohydr. Polym. 2018, 181, 215–223. [Google Scholar] [CrossRef]
- Mal, D.; Puspalata, R.; Rangarajan, S.; Velmurugan, S. Effect of gadolinium nitrate concentration on molecular product yield during gamma irradiation and on corrosion of stainless steel. Radiat. Phys. Chem. 2017, 138, 1–8. [Google Scholar] [CrossRef]
- Tonoike, K.; Miyoshi, Y.; Uchiyama, G. Benchmark critical experiments of a heterogeneous system of uranium fuel rods and uranium solution poisoned with gadolinium, and application of their results to JACS validation. J. Nucl. Sci. Technol. 2011, 48, 1118–1128. [Google Scholar] [CrossRef]
- Smolen, G.R.; Lloyd, R.C.; Matsumoto, T. Criticality data and validation studies of mixed-oxide fuel pin arrays in Pu+U+Gd nitrate. Nucl. Technol. 1994, 107, 340–355. [Google Scholar] [CrossRef]
- Bierman, S.R. Reactivity measurements under conditions typical to fuel element dissolution. Nucl. Technol. 1976, 31, 339–347. [Google Scholar] [CrossRef]
- Pandele, A.M.; Neacsu, P.; Cimpean, A.; Staras, A.; Miculescu, M.; Iordache, A.; Voicu, S.I.; Thakur, V.; Toader, O. Cellulose acetate membranes functionalized with resveratrol by covalent immobilization for improved osseointegration. Appl. Surf. Sci. 2018, 438, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Voicu, S.I.; Condruz, R.M.; Mitran, V.; Cimpean, A.; Miculescu, F.; Andronescu, C.; Miculescu, M.; Thakur, V.K. Sericin covalent immobilization onto cellulose acetate membranes. ACS Sustain. Chem. Eng. 2016, 4, 1765–1774. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Prog. Mater. Sci. 2020, 107, 100591. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. Compromising science by ignorant instrument calibration-need to revisit half a century of published XPS data. Angew. Chem. Int. Ed. 2020, 59, 5002–5006. [Google Scholar] [CrossRef]
- ISO. 15472:2010 Surface Chemical Analysis—X-ray Photoelectron Spectrometers—Calibration of Energy Scales; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- Voicu, S.I.; Thakur, V.K. Aminopropyl-triethoxysilane as a linker for functional cellulose-based materials: New Horizons and Future Challenges. Curr. Opin. Green Sustain. Chem. 2020, 30, 100480. [Google Scholar] [CrossRef]
- Zirak, M.; Abdollahiyan, A.; Eftekhari-Sis, B.; Saraei, M. Carboxymethyl cellulose coated Fe3O4@SiO2 core–shell magnetic nanoparticles for methylene blue removal: Equilibrium, kinetic, and thermodynamic studies. Cellulose 2018, 25, 503–515. [Google Scholar] [CrossRef]
- Jonoobi, M.; Ashori, A.; Siracusa, V. Characterization and properties of polyethersulfone/modified cellulose nanocrystals nanocomposite membranes. Polym. Test. 2019, 76, 333–339. [Google Scholar] [CrossRef]
- Bian, P.-W.; Sun, B.-Q.; Huang, L.-Q. Modification of polyvinyl alcohol/microfibrillated-cellulose films by ethylene triethoxysilane. J. Eng. Fiber. Fabr. 2020, 15, 1–8. [Google Scholar] [CrossRef]
- Ma, Y.L.; Cao, C.J.; Hou, C.M. Preparation of super-hydrophobic cotton fabric with crosslinkable fluoropolymer. Lect. Notes Electr. Eng. 2018, 477, 955–962. [Google Scholar]
- Yang, J.; Pu, Y.; Miao, D.G.; Ning, X. Fabrication of durably superhydrophobic cotton fabrics by atmospheric pressure plasma treatment with a siloxane precursor. Polymers 2018, 10, 460. [Google Scholar] [CrossRef] [Green Version]
- Rafieian, F.; Jonoobi, M.; Yu, Q. A novel nanocomposite membrane containing modified cellulose nanocrystals for copper ion removal and dye adsorption from water. Cellulose 2019, 26, 3359–3373. [Google Scholar] [CrossRef]
- Ferreira, F.J.L.; Silva, L.S.; da Silva, M.S.; Osajima, J.A.; Meneguin, A.B.; Santagneli, S.H.; Barud, H.S.; Bezerra, R.D.S.; Silva-Filho, E.C. Understanding kinetics and thermodynamics of the interactions between amitriptyline or eosin yellow and aminosilane-modified cellulose. Carbohydr. Polym. 2019, 225, 115246. [Google Scholar] [CrossRef] [PubMed]
- Leong, A.J.; Nyuk-Ting, N.; Nor, N.S.M.; Baig, U.; Ibrahim, W.A.W.; Sanagi, M.M.; Keyon, A.S.A. Removal of rhodamine 6G and crystal violet dyes from water sample using cellulose acetate-(3-aminopropyl)-triethoxysilane sorbent. AIP Conf. Proc. 2019, 2155, 020013. [Google Scholar]
- Gao, X.; Xu, Y.; Ma, M.; Rao, K.; Wang, Z. Simultaneous passive sampling of hydrophilic and hydrophobic emerging organic contaminants in water. Ecotoxicol. Environ. Saf. 2019, 178, 25–32. [Google Scholar] [CrossRef]
- Velu, S.; Muruganandam, L. Development of PES membranes for separation of metal ions: Effect of polymer composition. Int. J. Chem. Sci. 2011, 9, 757–768. [Google Scholar]
- Vinnikova, N.; Tanny, G.B. Transport of ions and water in sulfonated polysulfone membranes. ACS Symp. Ser. 1981, 153, 351–365. [Google Scholar]
- Jitsuhara, I.; Kimura, S. Structure and properties of charged ultrafiltration membranes made of sulfonated polysulfone. J. Chem. Eng. Jpn. 1983, 16, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Malaisamy, R.; Mahendran, R.; Mohan, D.; Rajendran, M.; Mohan, V. Cellulose acetate and sulfonated polysulfone blend ultrafiltration membranes. I. Preparation and characterization. J. Appl. Polym. Sci. 2002, 86, 1749–1761. [Google Scholar] [CrossRef]
- Filimon, A.; Avram, E.; Stoica, I. Rheological and morphological characteristics of multicomponent polysulfone/poly(vinyl alcohol) systems. Polym. Int. 2014, 63, 1856–1868. [Google Scholar] [CrossRef]
- Filimon, A.; Avram, E.; Dunca, S.; Stoica, I.; Ioan, S. Surface properties and antibacterial activity of quaternized polysulfones. J. Appl. Polym. Sci. 2009, 112, 1808–1816. [Google Scholar] [CrossRef]
- Filimon, A.; Marinica Albu, R.; Stoica, I.; Avram, E. Blends based on ionic polysulfones with improved conformational and microstructural characteristics: Perspectives for biomedical applications. Compos. B 2016, 93, 1–11. [Google Scholar] [CrossRef]
Sample | C 1s [%] | O 1s [%] | N 1s [%] | Si 2p [%] |
---|---|---|---|---|
CA | 45.16 | 44.80 | 6.86 | - |
CA/APTES | 64.96 | 20.49 | 5.91 | 8.64 |
CA/APTES/GA | 70.31 | 20.27 | 4.44 | 4.98 |
CA/APTES/CE | 63.27 | 33.21 | - | 2.83 |
Sample Name | Wt. (%) | DTG (°C) | Td5% (°C) |
---|---|---|---|
CA | 89 ± 1 | 433 ± 1 | 204 ± 3 |
CA/APTES | 86 ± 1 | 431 ± 1 | 209 ± 3 |
CA/APTES/GA | 88 ± 1 | 430 ± 1 | 353 ± 3 |
CA/APTES/CE | 100 ± 1 | 433 ± 1 | 216 ± 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serbanescu, O.S.; Pandele, A.M.; Oprea, M.; Semenescu, A.; Thakur, V.K.; Voicu, S.I. Crown Ether-Immobilized Cellulose Acetate Membranes for the Retention of Gd (III). Polymers 2021, 13, 3978. https://doi.org/10.3390/polym13223978
Serbanescu OS, Pandele AM, Oprea M, Semenescu A, Thakur VK, Voicu SI. Crown Ether-Immobilized Cellulose Acetate Membranes for the Retention of Gd (III). Polymers. 2021; 13(22):3978. https://doi.org/10.3390/polym13223978
Chicago/Turabian StyleSerbanescu, Oana Steluta, Andreea Madalina Pandele, Madalina Oprea, Augustin Semenescu, Vijay Kumar Thakur, and Stefan Ioan Voicu. 2021. "Crown Ether-Immobilized Cellulose Acetate Membranes for the Retention of Gd (III)" Polymers 13, no. 22: 3978. https://doi.org/10.3390/polym13223978
APA StyleSerbanescu, O. S., Pandele, A. M., Oprea, M., Semenescu, A., Thakur, V. K., & Voicu, S. I. (2021). Crown Ether-Immobilized Cellulose Acetate Membranes for the Retention of Gd (III). Polymers, 13(22), 3978. https://doi.org/10.3390/polym13223978