Behavior of CFRP-Confined Sand-Based Material Columns under Axial Compression
Abstract
:1. Introduction
2. Experimental Scheme
2.1. Specimen Details
2.2. Materials Properties
2.2.1. Cementing Material
2.2.2. Sand
2.2.3. Sand-Based Material (SBM)
- (1)
- Vicat Needle Test
- (2)
- Scanning Electron Microscopy (SEM) Test
2.2.4. CFRP
2.3. Specimen Preparation
2.4. Testing Configuration and Apparatus
3. Results and Discussion
3.1. Failure Mode
3.2. Load–Strain Behavior of CSBM
3.3. Lateral Dilatation Behavior of Confined SBM
3.4. Material Consumption
4. Confining Action of CFRP Composite on SBM
4.1. Calculation of the Confining Pressure
4.2. Influence of the Water-to-Powder Ratio
4.3. Effect of the Mixing Amount of Sand
4.4. Effect of CFRP Tube Thickness
5. Conclusions
- (1)
- The consumption of cementitious material in SBM is smaller than that of its counterparts made of pure cementitious material with similar ultimate strength, indicating that the SBM is much more cost effective;
- (2)
- The ultimate load and ultimate axial strain of SBM are dramatically improved when it is confined by the exterior CFRP jacket;
- (3)
- Compared with plain SBM specimens, shear failure with apparent horizontal bedding was the predominant failure mode for the CFRP-confined SBM column specimens. The higher the water-to-powder ratio, the thicker the CFRP tube, and the lower the mixing amount of sand, the more significant the horizontal bedding appeared;
- (4)
- Using a higher water-to-powder ratio of cementitious material can result in sizeable axial deformation and a limited load-bearing capacity of the novel column;
- (5)
- Increasing the amount of desert sand is an effective method to obtain a larger load-bearing capacity with minor axial deformation when the water–powder ratio and CFRP thickness are the same;
- (6)
- A high confining pressure usually improves the anti-compressive performance dramatically, and thus a thicker CFRP tube is highly recommended from the design aspect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, Y.; Liu, Q.; Gong, G.; Wang, H. Application of a combined support system to the weak floor reinforcement in deep underground coal mine. Int. J. Rock Mech. Min. Sci. 2014, 71, 143–150. [Google Scholar] [CrossRef]
- Kang, H.; Li, J.; Yang, J.; Gao, F. Investigation on the influence of abutment pressure on the stability of rock bolt reinforced roof strata through physical and numerical modeling. Rock Mech. Rock Eng. 2017, 50, 387–401. [Google Scholar] [CrossRef]
- Tan, X.; Chen, W.; Liu, H.; Chan, A.; Tian, H.; Meng, X. A combined supporting system based on foamed concrete and U-shaped steel for underground coal mine roadways undergoing large deformations. Tunn. Undergr. Space Technol. 2017, 68, 196–210. [Google Scholar] [CrossRef]
- Huang, W.; Yuan, Q.; Tan, Y.; Wang, J.; Liu, G.; Qu, G. An innovative support technology employing a concrete-filled steel tubular structure for a 1000-m-deep roadway in a high in situ stress field. Tunn. Undergr. Space Technol. 2018, 73, 26–36. [Google Scholar] [CrossRef]
- Zhao, H. State-of-the-art of standing supports for gob-side entry retaining technology in China. J. S. Afr. Inst. Min. Metall. 2019, 119, 891–906. [Google Scholar] [CrossRef]
- Yu, T.; Zhao, H.; Ren, T.; Remennikov, A. Novel hybrid FRP tubular columns with large deformation capacity: Concept and behaviour. Compos. Struct. 2019, 212, 500–512. [Google Scholar] [CrossRef]
- Batchler, T. Analysis of the design and performance characteristics of pumpable roof supports. Int. J. Min. Sci. Technol. 2017, 27, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Tarrant, G. Loading Mechanics of the ‘Can’ and Implications for Improved Strength and Stiffness Properties. In Proceedings of the Coal 2005 Coal Operators’ Conference, Melbourne, Australia, 26–28 April 2005; pp. 63–72. [Google Scholar]
- Barczak, T. Research developments that contributed to the landscape of longwall roof support design over the past 25 years. In Advances in Coal Mine Ground Control; Peng, S., Ed.; Elsevier: Oxford, UK, 2017; pp. 1–34. [Google Scholar] [CrossRef]
- Barczak, T. An overview of standing roof support practices and developments in the United States. In Proceedings of the Third South African Rock Engineering Symposium, Johannesburg, South Africa, 10–12 October 2005; South African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2005; pp. 301–334. [Google Scholar]
- Zhao, H.; Ren, T.; Remennikov, A. Behaviour of FRP-confined coal rejects based backfill material under compression. Constr. Build. Mater. 2021, 268, 121171. [Google Scholar] [CrossRef]
- Zhao, H.; Ren, T.; Remennikov, A. A hybrid tubular standing support for underground mines: Compressive behaviour. Int. J. Min. Sci. Technol. 2021, 31, 215–224. [Google Scholar] [CrossRef]
- Teng, J.; Chen, J.; Smith, S.; Lam, L. FRP: Strengthened RC structures. Plym. Int. 2004, 53, 232–233. [Google Scholar] [CrossRef]
- Liao, J.; Yang, K.; Zeng, J.; Quach, W.; Ye, Y.; Zhang, L. Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) in circular columns. Eng. Struct. 2021, 11, 3246. [Google Scholar] [CrossRef]
- Zeng, J.; Ye, Y.; Quach, W.; Lin, G.; Yan, Z.; Zhou, J. Compressive and transverse shear behaviour of novel FRP-UHPC hybrid bars. Compos. Struct. 2022, 115001. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, W.; Tang, Z.; Yang, Y.; Wei, J. Mixed-Mode Debonding Behavior between CFRP Plates and Concrete under Fatigue Loading. J. Struct. Eng. 2021, 5, 147. [Google Scholar] [CrossRef]
- Wu, B.; Wang, X.; Bai, J.; Wu, W.; Zhu, X.; Li, G. Study on crack evolution mechanism of roadside backfill body in gob-side entry retaining based on UDEC Trigon model. Rock Mech. Rock Eng. 2019, 52, 3385–3399. [Google Scholar] [CrossRef]
- Zhao, H.; Ren, T.; Remennikov, A. Standing support incorporating FRP and high water-content material for underground space. Tunn. Undergr. Space Technol. 2021, 110, 103809. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, M.; Bai, J.; Yan, S.; Yu, X. Stability control of gob-side entry retained under the gob with close distance coal seams. Int. J. Min. Sci. Technol. 2021, 31, 321–332. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Bai, J.; Wang, G.; Wu, B. Post-peak mechanical characteristics of the high-water material for backfilling the gob-side entry retaining: From experiment to field application. Arab. J. Geosci. 2020, 13, 386. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, D.; Zhao, H.; Chi, M.; Yu, W. Behavior of weakly cemented rock with different moisture contents under various triaxial loading states. Energies 2019, 12, 1563. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, J. Research Status and Development Trend of High Sand Filling Materials. Key Eng. Mater. 2017, 4, 4402. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, G.; Zhang, D.; Chen, M.; Zhang, C. Study on material properties and similar material proportion of weakly cemented water-resisting strata. Arab. J. Geosci. 2019, 12, 1–13. [Google Scholar] [CrossRef]
- Arvind, S.; Allan, M.; Wahid, F.; Yu, B.; Lachlan, N.; Ali, M.; Brahim, B. Axial compression behaviour of all-composite modular wall system. Compos. Struct. 2021, 268, 113986. [Google Scholar] [CrossRef]
- Ferdous, W.; Manalo, A.; Yu, P.; Salih, C.; Abousnina, R.; Heyer, T.; Schubel, P. Tensile fatigue behavior of polyester and vinyl ester based GFRP laminates—A comparative evaluation. Polymers 2021, 13, 386. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wu, Y.; Zhou, Y.; Xing, F. Cyclic stress-strain model for FRP-confined concrete considering post-peak softening. Compos. Struct. 2018, 201, 902–915. [Google Scholar] [CrossRef]
- Zangana, S.; Epaarachchi, J.; Ferdous, W.; Leng, J.; Schubel, P. Behaviour of continuous fibre composite sandwich core under low-velocity impact. Thin Wall. Struct. 2021, 158, 107157. [Google Scholar] [CrossRef]
- Su, H.; Bai, J.; Yan, S.; Chen, Y.; Zhang, Z. Study on gob-side entry retaining in fully-mechanized longwall with top-coal caving and its application. Int. J. Min. Sci. Technol. 2015, 25, 503–510. [Google Scholar] [CrossRef]
- Zhou, H.; Hou, C.; Wang, C. Research and application of stowing material with high water content. J. China Coal Soc. 1992, 17, 25. [Google Scholar] [CrossRef]
- Zhang, Z.; Bai, J.; Chen, Y.; Yan, S. An innovative approach for gob-side entry retaining in highly gassy fully-mechanized long wall top-coal caving. Int. J. Rock Mech. Min. Sci. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Song, C.; Chen, K.; Wang, H. The Mechanism of hydration and hardening reaction of high-water material. Bull. Mineral. Petrol. Geochem. 1999, 18, 261–263. [Google Scholar]
- Zhang, Y.; Liu, C.; Xie, H.; Lu, B.; Zou, J. Experimental research on influence of water cement ratio on mechanical characteristics of the high-water-content material. Adv. Eng. Sci. 2017, 49 (Suppl. 2), 115–120+127. [Google Scholar] [CrossRef]
- ASTMC136/C136M. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates; American Society for Testing and Materials: West Conshohocken, PA, USA, 2014. [Google Scholar]
- GB/T1346-2001. Test Methods for Water Requirement of Normal Consistency, Setting Time and Soundness of the Portland Cement; The Standards Press of China: Beijing, China, 2001. [Google Scholar]
- Gupta, V.; Ahmed, I. The effect of pH of water and mineralogical properties on the slake durability (degradability) of different rocks from the Lesser Himalaya, India. Eng. Geol. 2007, 95, 79–87. [Google Scholar] [CrossRef]
- Benzaazoua, M.; Fall, M.; Belem, M. A contribution to understanding the hardening process of cemented pastefill. Miner. Eng. 2004, 17, 141–152. [Google Scholar] [CrossRef]
- Jafari, M.; Shahsavari, M.; Grabinsky, M. Cemented paste backfill 1-D consolidation results interpreted in the context of ground reaction curves. Rock Mech. Rock Eng. 2020, 53, 4299–4308. [Google Scholar] [CrossRef]
- GB/T5350-2005. Fiber-Reinforced Thermosetting Plastic Composites Pipe: Determination for Longitudinal Compressive Properties; The Standards Press of China: Beijing, China, 2005. [Google Scholar]
- López-Campos, J.; Baldonedo, J.; Suárez, S.; Suárez, A.; Casarejos, E.; Fernández, J. Finite element validation of an energy attenuator for the design of a formula student car. Mathematics 2020, 8, 416. [Google Scholar] [CrossRef] [Green Version]
- ASTMD7012-2010. Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures; American Society for Testing and Materials: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Zhou, J.; Lin, W.; Guo, S.; Zeng, J.; Bai, Y. Behavior of FRP-confined FRP spiral reinforced concrete square columns (FCFRCs) under axial compression. J. Build. Eng. 2021, 45, 103452. [Google Scholar] [CrossRef]
- Nonat, A.; Mutin, J.; Lecoq, X.; Jiang, S. Physico-chemical parameters determining hydration and particle interactions during the setting of silicate cements. Solid State Ionics 1997, 101–103 Pt 2, 923–930. [Google Scholar] [CrossRef]
- Jiang, T.; Teng, J. Analysis-oriented stress–strain models for FRP–confined concrete. Eng. Struct. 2007, 29, 2968–2986. [Google Scholar] [CrossRef] [Green Version]
- Karantzikis, M.; Papanicolaou, C.; Antonopoulos, C.; Triantafillou, T. Experimental investigation of nonconventional confinement for concrete using FRP. J. Compos. Constr. 2005, 9, 480–487. [Google Scholar] [CrossRef]
- Fanaradelli, T.; Rousakis, T. 3D Finite element pseudodynamic analysis of deficient RC rectangular columns confined with fiber reinforced polymers under axial compression. Polymers 2020, 12, 2546. [Google Scholar] [CrossRef] [PubMed]
- Keshtegar, B.; Gholampour, A.; Ozbakkaloglu, T.; Zhu, S.; Trung, N. Reliability analysis of FRP-confined concrete at ultimate using conjugate search direction method. Polymers 2020, 12, 707. [Google Scholar] [CrossRef] [Green Version]
- Rousakis, T.; Panagiotakis, G.; Archontaki, E.; Kostopoulos, A. Prismatic RC columns externally confined with FRP sheets and pre-tensioned basalt fiber ropes under cyclic axial load. Compos. Part B Eng. 2019, 163, 96–106. [Google Scholar] [CrossRef]
- Dai, J.; Bai, Y.; Teng, J. Behavior and modeling of concrete confined with FRP composites of large deformability. J. Compos. Constr. 2011, 15, 963–973. [Google Scholar] [CrossRef]
- Zhao, H.; Ting, R.; Alex, R. Hybrid roof standing supports in underground mining: Concept and behaviour. Geomech. Geoengin. 2021, 6, 1–15. [Google Scholar] [CrossRef]
- Lam, L.; Teng, J. Ultimate condition of fiber reinforced polymer-confined concrete. J. Compos. Constr. 2004, 8, 539–548. [Google Scholar] [CrossRef]
- Mirmiran, A.; Shahawy, M.; Samaan, M. Strength and Ductility of Hybrid FRP-Concrete Beam-Columns. J. Struct. Eng. 1999, 125, 1085–1093. [Google Scholar] [CrossRef]
- He, M.; Gong, W.; Wang, J.; Qi, P.; Tao, Z.; Du, S.; Peng, Y. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. Int. J. Rock Mech. Min. Sci. 2014, 67, 29–42. [Google Scholar] [CrossRef]
- He, M.; Li, C.; Gong, W.; Sousa, L.; Li, S. Dynamic tests for a constant-resistance-large-deformation bolt using a modified SHTB system. Tunn. Undergr. Space Technol. 2017, 64, 103–116. [Google Scholar] [CrossRef]
- Sun, X.; Chen, F.; He, M.; Gong, W.; Xu, H.; Lu, H. Physical modeling of floor heave for the deep-buried roadway excavated in ten degree inclined strata using infrared thermal imaging technology. Tunn. Undergr. Space Technol. 2017, 63, 228–243. [Google Scholar] [CrossRef]
Group | CFRP Layer | Water-to-Powder Ratio (w/p) | Sand Content (as) |
---|---|---|---|
N-1.0-0 | / | 1.0 | 0% |
N-1.0-30 | 1.0 | 30% | |
N-1.0-60 | 1.0 | 60% | |
N-1.5-0 | 1.5 | 0% | |
N-1.5-60 | 1.5 | 60% | |
N-2.0-0 | 2.0 | 0% | |
N-2.0-60 | 2.0 | 60% | |
C-2-1.0-0 | 2 | 1.0 | 0% |
C-2-1.0-30 | 2 | 1.0 | 30% |
C-2-1.0-60 | 2 | 1.0 | 60% |
C-2-1.5-0 | 2 | 1.5 | 0% |
C-2-1.5-60 | 2 | 1.5 | 60% |
C-2-2.0-0 | 2 | 2.0 | 0% |
C-2-2.0-60 | 2 | 2.0 | 60% |
C-3-1.5-0 | 3 | 1.5 | 0% |
Series | Group |
---|---|
R | N-1.0-0 |
N-1.0-30 | |
N-1.0-60 | |
N-1.5-0 | |
N-1.5-60 | |
N-2.0-0 | |
N-2.0-60 | |
1 | C-2-1.0-0 |
C-2-1.5-0 | |
C-2-2.0-0 | |
2 | C-2-1.0-60 |
C-2-1.5-60 | |
C-2-2.0-60 | |
3 | C-2-1.0-0 |
C-2-1.0-30 | |
C-2-1.0-60 | |
4 | C-2-1.5-0 |
C-3-1.5-0 |
Series | Group | Pu(kN) | Pc(kN) | Pt(kN) | Pu − Pt | εu(%) | εc(%) | (Pu − Pt)/Pc | εu/εc |
---|---|---|---|---|---|---|---|---|---|
1 | C-2-1.0-0 | 72.6 | 18.8 | 9.3 | 63.3 | 14.2 | 1.78 | 3.37 | 7.98 |
C-2-1.5-0 | 50.8 | 7.7 | 41.5 | 32.0 | 1.81 | 5.39 | 17.68 | ||
C-2-2.0-0 | 56.9 | 5.2 | 47.6 | 43.5 | 1.60 | 9.15 | 27.19 | ||
2 | C-2-1.0-60 | 146.5 | 20.5 | 137.2 | 11.0 | 1.19 | 6.70 | 9.24 | |
C-2-1.5-60 | 113.4 | 14.0 | 104.1 | 15.0 | 1.64 | 7.44 | 9.15 | ||
C-2-2.0-60 | 82.7 | 8.2 | 73.4 | 16.6 | 1.79 | 8.95 | 9.29 | ||
3 | C-2-1.0-0 | 72.6 | 18.8 | 63.3 | 14.2 | 1.78 | 3.36 | 7.98 | |
C-2-1.0-30 | 104.7 | 16.9 | 95.4 | 14.2 | 1.55 | 5.64 | 9.16 | ||
C-2-1.0-60 | 146.5 | 20.5 | 137.2 | 11.0 | 1.19 | 6.69 | 9.24 | ||
4 | C-2-1.5-0 | 50.8 | 7.7 | 41.5 | 32.0 | 1.81 | 5.39 | 17.68 | |
C-3-1.5-0 | 90.2 | 7.7 | 16.3 | 80.9 | 40.9 | 1.81 | 10.50 | 22.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Liu, H.; Deng, W.; Wang, H.; Yan, H. Behavior of CFRP-Confined Sand-Based Material Columns under Axial Compression. Polymers 2021, 13, 3994. https://doi.org/10.3390/polym13223994
Li G, Liu H, Deng W, Wang H, Yan H. Behavior of CFRP-Confined Sand-Based Material Columns under Axial Compression. Polymers. 2021; 13(22):3994. https://doi.org/10.3390/polym13223994
Chicago/Turabian StyleLi, Guodong, Honglin Liu, Wentao Deng, Hongzhi Wang, and Haitian Yan. 2021. "Behavior of CFRP-Confined Sand-Based Material Columns under Axial Compression" Polymers 13, no. 22: 3994. https://doi.org/10.3390/polym13223994
APA StyleLi, G., Liu, H., Deng, W., Wang, H., & Yan, H. (2021). Behavior of CFRP-Confined Sand-Based Material Columns under Axial Compression. Polymers, 13(22), 3994. https://doi.org/10.3390/polym13223994