Transparent Self-Cleaning Coatings Based on Colorless Polyimide/Silica Sol Nanocomposite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PASS Suspensions
2.3. Preparation of PIFSS Coatings
2.4. Characterizations and Properties Evalution
2.5. Self-Cleaning, Adhesion Cross-Cut and Pencil Tests
3. Results and Discussion
3.1. Preparation and Characterization of PIFSS Coatings
3.2. Self-Cleaning and Hydrophobic Properties of PIFSS Coatings
3.3. Transeparency of PIFSS Coatings
3.4. Surface Mophology and Roughness of PIFSS Coatings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latthe, S.S.; Sutar, R.S.; Kodag, V.S.; Bhosale, A.K.; Kumar, A.M.; Sadasivuni, K.K.; Xing, R.; Liu, S. Self-cleaning superhydrophobic coatings: Potential industrial applications. Prog. Org. Coat. 2019, 128, 52–58. [Google Scholar] [CrossRef]
- Dalawai, S.P.; Aly, M.A.S.; Latthe, S.S.; Xing, R.; Sutar, R.S.; Nagappan, S.; Ha, C.S.; Sadasivuni, K.; Liu, S. Recent advances in durability of superhydrophobic self-cleaning technology: A critical review. Prog. Org. Coat. 2020, 138, 105381. [Google Scholar] [CrossRef]
- Bayer, I.S. On the durability and wear resistance of transparent superhydrophobic coatings. Coatings 2017, 7, 12. [Google Scholar] [CrossRef]
- Hooda, A.; Goyat, M.S.; Pandey, J.K.; Kumar, A.; Gupta, R. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Prog. Org. Coat. 2020, 142, 105557. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Tran, N.N.; Plamondon, C.O.; Tuduri, L.; Vo, D.V.N.; Nanda, S.; Mishra, A.; Chao, H.P.; Bajpai, A.K. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Prog. Org. Coat. 2019, 132, 235–256. [Google Scholar] [CrossRef]
- Liu, S.; Liu, X.; Latthe, S.S.; Gao, L.; An, S.; Yoon, S.S.; Liu, B.; Xing, R. Self-cleaning transparent superhydrophobic coatings through simple sol-gel processing of fluoroalkylsilane. Appl. Surf. Sci. 2015, 351, 897–903. [Google Scholar] [CrossRef]
- Fei, L.; He, Z.; LaCoste, J.D.; Nguyen, T.H.; Sun, Y. A mini review on superhydrophobic and transparent surfaces. Chem. Rec. 2021, 20, 1257–1268. [Google Scholar] [CrossRef]
- Rahmawan, Y.; Xu, L.; Yang, S. Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. J. Mater. Chem. A. 2013, 1, 2955–2969. [Google Scholar] [CrossRef]
- Zhao, X.; Park, D.S.; Choi, J.; Park, S.; Soper, S.A.; Murphy, M.C. Robust, transparent, superhydrophobic coatings using navel hydrophobic/hydrophilic dual-sized silica particles. J. Colloid Interface Sci. 2020, 574, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Mammen, L.; Zhao, Y.; Lellig, P.; Mullen, K.; Li, C.; Butt, H.J.; Voller, D. Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules. Adv. Mater. 2011, 23, 2962–2965. [Google Scholar] [CrossRef] [PubMed]
- Tuvshindorj, U.; Yildirim, A.; Ozturk, F.E.; Bayindir, M. Robust cassie state of wetting in transparent superhydrophobic coatings. ACS Appl. Mater. Interfaces 2014, 6, 9680–9688. [Google Scholar] [CrossRef] [Green Version]
- Lyu, J.; Wu, B.; Wu, N.; Peng, C.; Yang, J.; Meng, Y.; Xing, S. Green preparation of transparent superhydrophobic coatings with persistent dynamic impact resistance for outdoor applications. Chem. Eng. J. 2021, 404, 126456. [Google Scholar] [CrossRef]
- Tang, X.; Nan, S.; Wang, T.; Chen, Y.; Yu, F.; Zhang, G.; Pei, M. Facile strategy for fabrication of transparent superhydrophobic coatings on the surface of paper. RSC Adv. 2013, 3, 15571–15575. [Google Scholar] [CrossRef]
- Xu, L.; He, J. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles. Langmuir 2012, 28, 7512–7518. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, F.; Sun, J. A facile layer-to-layer deposition process for the fabrication of highly transparent superhydrophobic coatings. Chem. Commun. 2009, 2730–2732. [Google Scholar] [CrossRef]
- Gao, L.; He, J. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings. J. Colloid Interface Sci. 2021, 396, 152–159. [Google Scholar] [CrossRef]
- Kavale, M.S.; Mahadik, D.B.; Parale, V.G.; Wagh, P.B.; Gupta, S.C.; Rao, A.V.; Barshilia, H.C. Optically transparent, superhydrophobic methyltrimethoxysilane based silica coatings without silylating reagent. Appl. Surf. Sci. 2011, 258, 158–162. [Google Scholar] [CrossRef]
- Ardekani, S.R.; Aghdam, A.S.R.; Nazari, M.; Bayat, A.; Iranizad, E.S. A new approach for preparation of semi-transparent superhydrophobic coatings by ultrasonic spray hydrolysis of methyltrimethoxysilane. Prog. Org. Coat. 2019, 135, 248–254. [Google Scholar] [CrossRef]
- Mates, J.E.; Ibrahim, R.; Vera, A.; Guggenheim, S.; Qin, J.; Calewarts, D.; Waldroup, D.E.; Megaridis, C.M. Environmentally-safe and transparent superhydrophobic coatings. Green Chem. 2016, 18, 2185–2192. [Google Scholar] [CrossRef]
- Gao, S.; Dong, X.; Huang, J.; Li, S.; Li, Y.; Chen, Z.; Lai, Y. Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation. Chem. Eng. J. 2018, 333, 621–629. [Google Scholar] [CrossRef]
- Li, J.; Huang, Z.; Wang, F.; Yan, X.; Wei, Y. One-step preparation of transparent superhydrophobic coatings using atmospheric arc discharge. Appl. Phys. Lett. 2015, 107, 51603. [Google Scholar] [CrossRef]
- Ouhib, F.; Dirani, A.; Aqil, A.; Glinel, K.; Nysten, B.; Jonas, A.M.; Jerome, C.; Detrembleur, C. Transparent superhydrophobic coatings from amphiphilic fluorinated block copolymers synthesized by aqueous polymerization-induced self-assembly. Polym. Chem. 2016, 7, 3998–4003. [Google Scholar] [CrossRef]
- Ferrari, M.; Piccardo, P.; Vernet, J.; Cirisano, F. High transmittance superhydrophobic coatings with durable self-cleaning properties. Coatings 2021, 11, 493. [Google Scholar] [CrossRef]
- Cho, K.L.; Liaw, I.I.; Wu, A.H.F.; Lamb, R.N. Influence of roughness on a transparent superhydrophobic coating. J. Phys. Chem. C 2010, 114, 11228–11233. [Google Scholar] [CrossRef]
- Ipekci, H.H.; Arkaz, H.H.; Onses, M.S.; Hancer, M. Superhydrophobic coatings with improved mechanical robustness based on polymer brushes. Surf. Coat. Technol. 2016, 299, 162–168. [Google Scholar] [CrossRef]
- Tapaswi, P.K.; Ha, C.S. Recent trends on transparent colorless polyimides with balanced thermal and optical properties: Design and synthesis. Macromol. Chem. Phys. 2019, 220, 1800313. [Google Scholar] [CrossRef]
- Yi, C.; Li, W.; Shi, S.; He, K.; Ma, P.; Chen, M.; Yang, C. High-temperature-resistant and colorless polyimide: Preparations, properties, and applications. Sol. Energy 2020, 195, 340–354. [Google Scholar] [CrossRef]
- Zhang, C.; Shao, H.; Liang, S.; Geng, Y.; Chen, N.; Gu, Z.; Jiang, J. Single edge crack effect on mechanical property of polyimide flexible composite envelope. Compos. Struct. 2021, 274, 114340. [Google Scholar] [CrossRef]
- Yang, C.P. Synthesis of polyimide copolymers based on N,N′-(pyromellitoyl)diglycine. J. Polym. Sci. Polym. Chem. 1979, 17, 3255–3271. [Google Scholar] [CrossRef]
- Luong, N.D.; Hippi, U.; Korhonen, J.T.; Soininen, A.J.; Ruokolainen, J.; Johansson, L.-S.; Nam, J.-D.; Sinh, L.H.; Seppälä, J. Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer 2011, 52, 5237–5242. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Dhakshnamoorthy, M.; Jelmy, E.J.; Vasanthakumari, R.; Kothurkar, N.K. Synthesis and characterization of graphene oxide–polyimide nanofiber composites. RSC Adv. 2014, 4, 9743–9749. [Google Scholar] [CrossRef]
- Latthe, S.S.; Rao, A.V. Superhydrophobic SiO2 micro-particle coatings by spray method. Surf. Coat. Technol. 2012, 207, 489–492. [Google Scholar] [CrossRef]
- Xu, L.; Gaoab, A.L.; He, J. Fabrication of visible/near-IR antireflective and superhydrophobic coatings from hydrophobically modified hollow silica nanoparticles and poly(methyl methacrylate). RSC Adv. 2012, 2, 12764–12769. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
Sample Code | Amount of Silica Sol Suspension (g) a | Appearance b |
---|---|---|
PIFSS-0 | 0 | Transparent |
PIFSS-5 | 5 | Transparent |
PIFSS-10 | 10 | Transparent |
PIFSS-15 | 15 | Slightly opaque |
PIFSS-20 | 20 | Translucent and brittle |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.-J.; Ko, J.-H.; Jin, S.-W.; An, H.-S.; Kim, D.-B.; Yoon, K.-H.; Kim, H.-W.; Chung, C.-M. Transparent Self-Cleaning Coatings Based on Colorless Polyimide/Silica Sol Nanocomposite. Polymers 2021, 13, 4100. https://doi.org/10.3390/polym13234100
Choi Y-J, Ko J-H, Jin S-W, An H-S, Kim D-B, Yoon K-H, Kim H-W, Chung C-M. Transparent Self-Cleaning Coatings Based on Colorless Polyimide/Silica Sol Nanocomposite. Polymers. 2021; 13(23):4100. https://doi.org/10.3390/polym13234100
Chicago/Turabian StyleChoi, Yun-Je, Ju-Hee Ko, Seung-Won Jin, Hyun-Soo An, Dam-Bi Kim, Kang-Hoon Yoon, Hyun-Woo Kim, and Chan-Moon Chung. 2021. "Transparent Self-Cleaning Coatings Based on Colorless Polyimide/Silica Sol Nanocomposite" Polymers 13, no. 23: 4100. https://doi.org/10.3390/polym13234100
APA StyleChoi, Y. -J., Ko, J. -H., Jin, S. -W., An, H. -S., Kim, D. -B., Yoon, K. -H., Kim, H. -W., & Chung, C. -M. (2021). Transparent Self-Cleaning Coatings Based on Colorless Polyimide/Silica Sol Nanocomposite. Polymers, 13(23), 4100. https://doi.org/10.3390/polym13234100