Flame Retardancy and Thermal Behavior of Wool Fabric Treated with a Phosphorus-Containing Polycarboxylic Acid
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Fabric Treatment Procedure
2.2.1. Wool Pretreatment
2.2.2. Flame-Retardant Treatment
2.3. Characterization
2.3.1. Weight Gain
2.3.2. LOI Test
2.3.3. Vertical Burning Testing (VBT)
2.3.4. Washing Durability
2.3.5. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy
2.3.6. Cone Calorimetric Test (CCT)
2.3.7. Thermogravimetric Analysis (TGA)
2.3.8. Isothermal Heating Treatment and SEM Observation
2.3.9. Differential Scanning Calorimeter (DSC) Testing
2.3.10. TG-FTIR
3. Results and Discussion
3.1. Flame Retardancy and Durability
3.2. Combustion Properties
3.3. Analysis of Thermal Properties
3.4. Isothermal Heat Treatment
3.5. DSC
3.6. TG-FTIR
3.7. Analysis of the Flame-Retardancy Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wortmann, F.J. The structure and properties of wool and hair fibres. In Handbook of Textile Fibre Structure; Eichhorn, J.W.S.H.S.J., Jaffe, M., Kikutani, T., Eds.; Woodhead Publishing: Cambridge, UK, 2009; Volume 2, pp. 108–145. [Google Scholar] [CrossRef]
- Horrocks, A.R. Flame-retardant finishing of textiles. Rev. Prog. Coloration 1986, 16, 62–101. [Google Scholar] [CrossRef]
- Benisek, L. Zirpro Wool Textiles. Fiber Mater. 1984, 8, 183–195. [Google Scholar] [CrossRef]
- Kozłowski, R.M.; Muzyczek, M. 10—Improving the flame retardancy of natural fibres. In Handbook of Natural Fibres, 2nd ed.; Kozłowski, R.M., Mackiewicz-Talarczyk, M., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 355–391. [Google Scholar] [CrossRef]
- Schartel, B. Phosphorus-based Flame Retardancy Mechanisms-Old Hat or a Starting Point for Future Development? Materials 2010, 3, 4710–4745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Guan, J.; Chen, G.; Yang, X.; Tang, R. Adsorption and flame retardant properties of bio-based phytic acid on wool fabric. Polymers 2016, 8, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basak, S.; Ali, S.W. Sustainable fire retardancy of textiles using bio-macromolecules. Polym. Degrad. Stab. 2016, 133, 47–64. [Google Scholar] [CrossRef]
- Carosio, F.; Di Blasio, A.; Alongi, J.; Malucelli, G. Green DNA-based flame retardant coatings assembled through Layer by Layer. Polymer 2013, 54, 5148–5153. [Google Scholar] [CrossRef]
- Benisek, L. Communication: Improvement of the natural flame-resistance of wool. Part I: Metal-complex applications. J. Text. Inst. 1974, 65, 102–108. [Google Scholar] [CrossRef]
- Forouharshad, M.; Montazer, M.; Bameni Moghadam, M.; Saligheh, O. Flame retardancy of wool fabric with Zirconium oxychloride optimized by central composite design. J. Fire Sci. 2010, 28, 561–572. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Cheng, X.; Tang, R. Phytic acid as an eco-friendly flame retardant for silk/wool blend: A comparative study with fluorotitanate and fluorozirconate. J. Clean. Prod. 2018, 198, 1044–1052. [Google Scholar] [CrossRef]
- Zhang, F.; Guan, J.; Chen, G. Performance of flame retardant wool fabric grafted with vinyl phosphate. J. Eng. Fiber Fabr. 2014, 9, 6. [Google Scholar] [CrossRef]
- Basak, S.; Samanta, K.K.; Chattopadhyay, S.K.; Pandit, P.; Maiti, S. Green fire-retardant finishing and combined dyeing of proteinous wool fabric. Color. Technol. 2016, 132, 135–143. [Google Scholar] [CrossRef]
- Kaynak, E.; Üreyen, M.E.; Koparal, A.S. Halogen free flame retardant finishing of wool and wool rich fabrics for aircraft seats. Mater. Today Proc. 2019, 11, 258–262. [Google Scholar] [CrossRef]
- Michael, E.; Hall, S.S. The Reaction of wool with N-Hydroxymethyl phosphonopropionamide. Polym. Degrad. Stab. 1991, 33, 207–212. [Google Scholar] [CrossRef]
- Avraham, B.; Sarah, H.; Menachem, L. The Chemistry of THPC-Urea polymers and relationship to flame retardance on wool and wool-polyester blends. II. Relative FlameRetardant Efficiency on Wool, Polyester, and Wool-Polyester Blends. J. Polym. Sci. Pol. Chem. 1979, 17, 39–47. [Google Scholar] [CrossRef]
- Teli, M.D.; Pandit, P. Novel method of ecofriendly single bath dyeing and functional finishing of wool protein with coconut shell extract biomolecules. ACS Sustain. Chem. Eng. 2017, 5, 8323–8333. [Google Scholar] [CrossRef]
- Basak, S.; Raja, A.S.M.; Saxena, S.; Patil, P.G. Tannin based polyphenolic bio-macromolecules: Creating a new era towards sustainable flame retardancy of polymers. Polym. Degrad. Stab. 2021, 189, 109603. [Google Scholar] [CrossRef]
- Cheng, X.; Guan, J.; Yang, X.; Tang, R. Durable flame retardant wool fabric treated by phytic acid and TiO2 using an exhaustion-assisted pad-dry-cure process. Themochim. Acta 2018, 665, 28–36. [Google Scholar] [CrossRef]
- Cheng, X.; Guan, J.; Kiekens, P.; Yang, X.; Tang, R. Preparation and evaluation of an eco-friendly, reactive, and phytic acid-based flame retardant for wool. Ract. Funct. Polym. 2019, 134, 58–66. [Google Scholar] [CrossRef]
- Mathur, P.; Sheikh, J.N.; Sen, K. Durable flame-retardant wool using sulphamic acid. Polym. Degrad. Stab. 2020, 174, 109101. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, W.; Wu, Y.; Ma, Y.; Xu, J.; Guan, J. Borate functionalized caramel as effective intumescent flame retardant for wool fabric. Polym. Degrad. Stab. 2021, 186, 109469. [Google Scholar] [CrossRef]
- Shan, G.; Jia, L.; Zhao, T.; Jin, C.; Liu, R.; Xiao, Y. A Novel DDPSi-FR Flame retardant treatment and its effects on the properties of wool fabrics. Fiber Polym. 2017, 18, 2196–2203. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W.; Huang, J.; Lai, Y.; Xing, T.; Chen, G.; Jin, W.; Liu, H.; Sun, B. Flame retardance and thermal stability of wool fabric treated by boron containing silica sols. Mater. Des. 2015, 85, 796–799. [Google Scholar] [CrossRef]
- Jose, S.; Shanmugam, N.; Das, S.; Kumar, A.; Pandit, P. Coating of lightweight wool fabric with nano clay for fire retardancy. J. Text. Inst. 2019, 110, 764–770. [Google Scholar] [CrossRef]
- Cheng, X.; Tang, R.; Yao, F.; Yang, X. Flame retardant coating of wool fabric with phytic acid/polyethyleneimine polyelectrolyte complex. Prog. Org. Coat. 2019, 132, 7. [Google Scholar] [CrossRef]
- Cheng, X.; Guan, J.; Yang, X.; Tang, R.; Yao, F. A bio-resourced phytic acid/chitosan polyelectrolyte complex for the flame retardant treatment of wool fabric. J. Clean. Prod. 2019, 223, 342–349. [Google Scholar] [CrossRef]
- Martel, B.; Weltrowski, M.; Ruffin, D.; Morcellet, M. Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics: Study of the process parameters. J. Appl. Polym. Sci. 2002, 83, 1449–1456. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, Z.; Yin, W.; Sun, Q.; Sun, H.; Han, H.; Sheng, Q.; Yao, J. Selective adsorption of an eco-friendly and efficient depressant PBTCA onto dolomite for effective flotation of fluorapatite from dolomite. Chem. Eng. J. 2020, 400, 125780. [Google Scholar] [CrossRef]
- Yang, C.Q.; Wang, X. Formation of Cyclic Anhydride intermediates and esterification of cotton cellulose by multifunctional carboxylic acids: An infrared spectroscopy study. Text. Res. J. 1986, 66, 595–603. [Google Scholar] [CrossRef]
- Welch, C.M. Tetracarboxylic acids as formaldehyde-free durable press finishing agents Part I: Catalyst, additive, and durability studies. Text. Res. J. 1988, 58, 480–486. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Li, F.; Hu, W.; Hannam, P.M. Testing the formation of Ca–phosphonate precipitates and evaluating the anionic polymers as Ca-phosphonate precipitates and CaCO3 scale inhibitor in simulated cooling water. Corros. Sci. 2010, 52, 3883–3890. [Google Scholar] [CrossRef]
- Liu, L.; Cao, T.; Zhang, Q.; Cui, C. Organic phosphorus compounds as inhibitors of corrosion of carbon steel in circulating cooling water: Weight loss method and thermodynamic and quantum chemical studies. Adv. Meter. Sci. Eng. 2018, 2018, 1653484. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Sui, S.; Zhu, P.; Dong, Z.; Zhang, L. Wrinkle resistant finishing of cotton fabrics with the complex system of PBTCA/BTCA. Text. Aux. 2011, 28, 30–32. [Google Scholar] [CrossRef]
- Wang, H.; Sheng, G.; Wang, W. The discussion of wrinkle resistant finish of cotton and modified cotton fabric with PBTCA. Text. Aux. 2008, 25, 22–24. [Google Scholar] [CrossRef]
- Hassan, M.M.; Leighs, S.J. Effect of surface treatments on physicomechanical, stain-resist, and UV protection properties of wool fabrics. Appl. Surf. Sci. 2017, 419, 348–356. [Google Scholar] [CrossRef]
- Hsieh, S.H.; Huang, Z.K.; Huang, Z.Z.; Tseng, Z.S. Antimicrobial and physical properties of woolen fabrics cured with citric acid and chitosan. J. Appl. Polym. Sci. 2004, 94, 1999–2007. [Google Scholar] [CrossRef]
- Davies, P.J.; Horrocks, A.R.; Miraftab, M. Scanning electron microscopic studies of wool//intumescent char formation. Polym. Int. 2000, 49, 1125–1132. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Y.; Ren, Y.; Wang, Y.; Guo, X.; Liu, X. Phosphorylation of sodium copper chlorophyll enables color-fasten and durable flame retardant wool fibers. Polym. Degrad. Stab. 2020, 179, 109286. [Google Scholar] [CrossRef]
- Yin, D.; Wang, J.; Zhang, X. Study of synthesis and structure of PBTCA. J. Dalian Univ. Technol. 2001, 41, 46–49. [Google Scholar] [CrossRef]
- Alongi, J.; Carletto, R.A.; Di Blasio, A.; Carosio, F.; Bosco, F.; Malucelli, G. DNA: A novel, green, natural flame retardant and suppressant for cotton. J. Mater. Chem. A 2013, 1, 4779–4785. [Google Scholar] [CrossRef]
- Zhao, X.; Babu, H.V.; Llorca, J.; Wang, D. Impact of halogen-free flame retardant with varied phosphorus’s chemical surrounding on the properties of diglycidyl ether of bisphenol-A type epoxy resin: Synthesis, fire behaviour, flame-retardant mechanism and mechanical properties. RSC Adv. 2016, 6, 59226–59336. [Google Scholar] [CrossRef] [Green Version]
- Horrocks, A.R.; Davies, P.J. Char formation in flame-retarded wool fibres. Part 1. Effect of intumescent on thermogravimetric behaviour. FIRE Mater. 2000, 24, 151–157. [Google Scholar] [CrossRef]
- Beck, P.J.; Gordon, P.G.; Ingham, P.E. Thermogravimetric analysis of flame-retardant-treated wools. Text. Res. J. 1976, 46, 478–483. [Google Scholar] [CrossRef]
- Ingham, P.E. The Pyrolysis of wool and the Action of the flame retardant. J. App. Polym. Sci. 1971, 15, 3025–3041. [Google Scholar] [CrossRef]
- Senoz, E.; Wool, R.P.; McChalicher, C.W.J.; Hong, C.K. Physical and chemical changes in feather keratin during pyrolysis. Poly. Degrad. Stab. 2012, 97, 297–307. [Google Scholar] [CrossRef]
- Spei, R.H.M. Further thermoanalytical investigations of annealed keratins: The time and temperature dependence. Colloid Polym. Sci. 1990, 268, 630–635. [Google Scholar] [CrossRef]
- Spei, M.; Holzem, R. Thermo analytical investigations of extended and annealed keratins. Colloid Polym. Sci. 1987, 265, 965–970. [Google Scholar] [CrossRef]
- Wortmann, F.J.; Springob, C.; Sendelbach, G. Investigations of cosmetically treated human hair by differential scanning calorimetry in water. J. Cosmet. Sci. 2002, 53, 219–228. [Google Scholar]
- Wortmann, F.J.; Sendelbach, G.; Popescu, C. Fundamental DSC investigations of α-keratinous materials as basis for the interpretation of specific effects of chemical, cosmetic treatments on human hair. J. Cosmet. Sci. 2007, 58, 311–317. [Google Scholar]
- Brebu, M.; Spiridon, I. Thermal degradation of keratin waste. J. Anal. Polym. Pyrol. 2011, 91, 288–295. [Google Scholar] [CrossRef]
Samples | TTI (s) | PHRR (kW/m2) | Aver-EHC | CO2/CO | Residues (%) |
---|---|---|---|---|---|
Control | 9 | 305.9 | 19.5 | 13.1 | 1.4 |
W100 | 14 | 188.0 | 14.8 | 17.4 | 26.8 |
Samples | T10% a (°C) | T50% b (°C) | Residue at 700 °C (%) | |
---|---|---|---|---|
N2 | Control | 233 | 354 | 24.2 |
W20 | 253 | 376 | 33.8 | |
W60 | 256 | 394 | 36.3 | |
W100 | 256 | 408 | 37.7 | |
Air | Control | 241 | 415 | 0.36 |
W20 | 256 | 450 | 14.3 | |
W60 | 259 | 463 | 22.6 | |
W100 | 259 | 469 | 25.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Guo, S.; Zhang, C.; Qi, Z.; Li, L.; Zhu, P. Flame Retardancy and Thermal Behavior of Wool Fabric Treated with a Phosphorus-Containing Polycarboxylic Acid. Polymers 2021, 13, 4111. https://doi.org/10.3390/polym13234111
Wang H, Guo S, Zhang C, Qi Z, Li L, Zhu P. Flame Retardancy and Thermal Behavior of Wool Fabric Treated with a Phosphorus-Containing Polycarboxylic Acid. Polymers. 2021; 13(23):4111. https://doi.org/10.3390/polym13234111
Chicago/Turabian StyleWang, Huaifang, Shengnan Guo, Chuanjie Zhang, Zhichuang Qi, Lianfeng Li, and Ping Zhu. 2021. "Flame Retardancy and Thermal Behavior of Wool Fabric Treated with a Phosphorus-Containing Polycarboxylic Acid" Polymers 13, no. 23: 4111. https://doi.org/10.3390/polym13234111
APA StyleWang, H., Guo, S., Zhang, C., Qi, Z., Li, L., & Zhu, P. (2021). Flame Retardancy and Thermal Behavior of Wool Fabric Treated with a Phosphorus-Containing Polycarboxylic Acid. Polymers, 13(23), 4111. https://doi.org/10.3390/polym13234111