Fracture Behavior and Integrity of Different Direct Restorative Materials to Restore Noncarious Cervical Lesions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cavity Preparation and Restorative Procedures
2.2. Mechanical Testing
2.3. Microleakage Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sawlani, K.; Lawson, N.C.; Burgess, J.O.; Lemons, J.E.; Kinderknecht, K.E.; Givan, D.A.; Ramp, L. Factors influencing the progression of noncarious cervical lesions: A 5-year prospective clinical evaluation. J. Prosthet. Dent. 2016, 115, 571–577. [Google Scholar] [CrossRef]
- Tangsripongkul, P.; Jearanaiphaisarn, T. Resin Composite Core and Fiber Post Improved the Fracture Parameters of Endodontically Treated Maxillary Premolars with Wedge-shaped Cervical Lesions. J. Endod. 2020, 46, 1733–1737. [Google Scholar] [CrossRef] [PubMed]
- Zeola, L.; Pereira, F.A.; Machado, A.C.; Reis, B.R.; Kaidonis, J.; Xie, Z.; Townsend, G.C.; Ranjitkar, S.; Soares, P.V. Effects of non-carious cervical lesion size, occlusal loading and restoration on biomechanical behaviour of premolar teeth. Aust. Dent. J. 2016, 61, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Grippo, J.O.; Simring, M.; Coleman, T.A. Abfraction, Abrasion, Biocorrosion, and the Enigma of Noncarious Cervical Lesions: A 20-Year Perspective. J. Esthet. Restor. Dent. 2011, 24, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, D.N.R.; Thomas, R.Z.; Soares, P.V.; Cune, M.S.; Gresnigt, M.M.; Slot, D.E. Prevalence of noncarious cervical lesions among adults: A systematic review. J. Dent. 2020, 95, 103285. [Google Scholar] [CrossRef]
- Schroeder, M.; Reis, A.; Luque-Martinez, I.; Loguercio, A.D.; Masterson, D.; Maia, L.C. Effect of enamel bevel on retention of cervical composite resin restorations: A systematic review and meta-analysis. J. Dent. 2015, 43, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Peumans, M.; Politano, G.; Van Meerbeek, B. Treatment of noncarious cervical lesions: When, why, and how. Int. J. Esthet. Dent. 2020, 15, 16–42. [Google Scholar]
- May, S.; Cieplik, F.; Hiller, K.-A.; Buchalla, W.; Federlin, M.; Schmalz, G. Flowable composites for restoration of non-carious cervical lesions: Three-year results. Dent. Mater. 2017, 33, e136–e145. [Google Scholar] [CrossRef]
- Ichim, I.P.; Schmidlin, P.R.; Lic, Q.; Kieser, J.A.; Swain, M. Restoration of non-carious cervical lesions: Part II. Restorative material selection to minimise fracture. Dent. Mater. 2007, 23, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Perez, C.d.R.; Gonzalez, M.R.; Prado, N.A.; de Miranda, M.S.; Macêdo, M.d.A.; Fernandes, B.M. Restoration of noncarious cervical lesions: When, why, and how. Int. J. Dent. 2012, 2012, 687058. [Google Scholar] [CrossRef]
- Schwendicke, F.; Müller, A.; Seifert, T.; Jeggle-Engbert, L.-M.; Paris, S.; Göstemeyer, G. Glass hybrid versus composite for non-carious cervical lesions: Survival, restoration quality and costs in randomized controlled trial after 3 years. J. Dent. 2021, 110, 103689. [Google Scholar] [CrossRef]
- Luque-Martinez, I.; Mena-Serrano, A.; Muñoz, M.A.; Hass, V.; Reis, A.; Loguercio, A. Effect of Bur Roughness on Bond to Sclerotic Dentin With Self-etch Adhesive Systems. Oper. Dent. 2013, 38, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Loguercio, A.D.; Luque-Martinez, I.V.; Fuentes, S.; Reis, A.; Muñoz, M.A. Effect of dentin roughness on the adhesive performance in non-carious cervical lesions: A double-blind randomized clinical trial. J. Dent. 2017, 69, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Pecie, R.; Krejci, I.; García-Godoy, F.; Bortolotto, T. Noncarious cervical lesions (NCCL)—A clinical concept based on the literature review. Part 2: Restoration. Am. J. Dent. 2011, 24, 183. [Google Scholar] [PubMed]
- Kubo, S.; Yokota, H.; Yokota, H.; Hayashi, Y. Three-year clinical evaluation of a flowable and a hybrid resin composite in non-carious cervical lesions. J. Dent. 2010, 38, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fráter, M.; Forster, A.; Keresztúri, M.; Braunitzer, G.; Nagy, K. In vitro fracture resistance of molar teeth restored with a short fibre-reinforced composite material. J. Dent. 2014, 42, 1143–1150. [Google Scholar] [CrossRef]
- Demiryürek, E.Ö.; Külünk, Ş.; Saraç, D.; Yüksel, G.; Bulucu, B. Effect of different surface treatments on the push-out bond strength of fiber post to root canal dentin. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 108, e74–e80. [Google Scholar] [CrossRef]
- Asnaashari, M.; Kooshki, N.; Salehi, M.M.; Azari-Marhabi, S.; Moghadassi, H.A. Comparison of Antibacterial Effects of Photodynamic Therapy and an Irrigation Activation System on Root Canals Infected With Enterococcus faecalis: An In Vitro Study. J. Lasers Med. Sci. 2020, 11, 243–248. [Google Scholar] [CrossRef]
- Fráter, M.; Sáry, T.; Braunitzer, G.; Szabó, P.B.; Lassila, L.; Vallittu, P.K.; Garoushi, S. Fatigue failure of anterior teeth without ferrule restored with individualized fiber-reinforced post-core foundations. J. Mech. Behav. Biomed. Mater. 2021, 118, 104440. [Google Scholar] [CrossRef]
- Fráter, M.; Sáry, T.; Vincze-Bandi, E.; Volom, A.; Braunitzer, G.; P., B.S.; Garoushi, S.; Forster, A. Fracture Behavior of Short Fiber-Reinforced Direct Restorations in Large MOD Cavities. Polymer 2021, 13, 2040. [Google Scholar] [CrossRef]
- Robbins, J. Restoration of the endodontically treated tooth. Dent. Clin. N. Am. 2002, 46, 367–384. [Google Scholar] [CrossRef]
- Wood, I.; Jawad, Z.; Paisley, C.; Brunton, P. Non-carious cervical tooth surface loss: A literature review. J. Dent. 2008, 36, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Wandscher, V.; Bergoli, C.D.; Limberger, I.; Ardenghi, T.; Valandro, L. Preliminary Results of the Survival and Fracture Load of Roots Restored With Intracanal Posts: Weakened vs. Nonweakened Roots. Oper. Dent. 2014, 39, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Magne, P.; Lazari, P.; Carvalho, M.; Johnson, T.; Cury, A.D.B. Ferrule-Effect Dominates Over Use of a Fiber Post When Restoring Endodontically Treated Incisors: An In Vitro Study. Oper. Dent. 2017, 42, 396–406. [Google Scholar] [CrossRef]
- Lazari, P.; Carvalho, M.A.; Cury, A.A.D.B.; Magne, P. Survival of extensively damaged endodontically treated incisors restored with different types of posts-and-core foundation restoration material. J. Prosthet. Dent. 2018, 119, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Magne, P.; Carvalho, A.; Bruzi, G.; Anderson, R.; Maia, H.; Giannini, M. Influence of No-Ferrule and No-Post Buildup Design on the Fatigue Resistance of Endodontically Treated Molars Restored With Resin Nanoceramic CAD/CAM Crowns. Oper. Dent. 2014, 39, 595–602. [Google Scholar] [CrossRef]
- Barbosa Tde, S.; Miyakoda, L.S.; Pocztaruk Rde, L.; Rocha, C.P.; Gavião, M.B. Temporomandibular disorders and bruxism in childhood and adolescence: Review of the literature. Int. J. Pediatr. Otorhinolaryngol. 2008, 72, 299–314. [Google Scholar] [CrossRef]
- Cieplik, F.; Scholz, K.J.; Tabenski, I.; May, S.; Hiller, K.-A.; Schmalz, G.; Buchalla, W.; Federlin, M. Flowable composites for restoration of non-carious cervical lesions: Results after five years. Dent. Mater. 2017, 33, e428–e437. [Google Scholar] [CrossRef]
- van Dijken, J.W.; Sunnegårdh-Grönberg, K.; Lindberg, A. Clinical long-term retention of etch-and-rinse and self-etch adhesive systems in non-carious cervical lesions: A 13 years evaluation. Dent. Mater. 2007, 23, 1101–1107. [Google Scholar] [CrossRef]
- Fagundes, T.; E Barata, T.J.; Bresciani, E.; Santiago, S.; Franco, E.B.; Lauris, J.; Navarro, M.F.L. Seven-Year Clinical Performance of Resin Composite Versus Resin-Modified Glass Ionomer Restorations in Noncarious Cervical Lesions. Oper. Dent. 2014, 39, 578–587. [Google Scholar] [CrossRef]
- Correia, A.M.D.O.; Tribst, J.P.M.; Matos, F.D.S.; Platt, J.A.; Caneppele, T.; Borges, A.L.S. Polymerization shrinkage stresses in different restorative techniques for non-carious cervical lesions. J. Dent. 2018, 76, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Braga, R.R.; Yamamoto, T.; Tyler, K.; Boaro, L.; Ferracane, J.; Swain, M. A comparative study between crack analysis and a mechanical test for assessing the polymerization stress of restorative composites. Dent. Mater. 2012, 28, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.L.S.; Borges, A.B.; Xavier, T.A.; Bottino, M.C.; Platt, J.A. Impact of Quantity of Resin, C-factor, and Geometry on Resin Composite Polymerization Shrinkage Stress in Class V Restorations. Oper. Dent. 2014, 39, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.O.; Silva, A.H.; Guimarães, J.G.; Barcellos, A.D.; Sampaio, E.M.; Silva, E.M. Analysis of gap formation at tooth-composite resin interface: Effect of C-factor and light-curing protocol. J. Appl. Oral Sci. 2007, 15, 270–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braga, R.R.; Ballester, R.Y.; Ferracane, J. Factors involved in the development of polymerization shrinkage stress in resin-composites: A systematic review. Dent. Mater. 2005, 21, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Gamarra, V.S.S.; Borges, G.A.; Burnet, L.H., Jr.; Spohr, A.M. Marginal adaptation and microleakage of a bulk-fill composite resin photopolymerized with different techniques. Odontology 2017, 106, 56–63. [Google Scholar] [CrossRef]
- Anhesini, B.H.; Landmayer, K.; Nahsan, F.P.S.; Pereira, J.C.; Honório, H.M.; Francisconi-Dos-Rios, L.F. Composite vs. ionomer vs. mixed restoration of wedge-shaped dental cervical lesions: Marginal quality relative to eccentric occlusal loading. J. Mech. Behav. Biomed. Mater. 2018, 91, 309–314. [Google Scholar] [CrossRef]
- Vural, U.K.; Meral, E.; Ergin, E.; Gürgan, S. Twenty-four-month clinical performance of a glass hybrid restorative in non-carious cervical lesions of patients with bruxism: A split-mouth, randomized clinical trial. Clin. Oral Investig. 2020, 24, 1229–1238. [Google Scholar] [CrossRef]
- Bezerra, I.M.; Brito, A.C.M.; de Sousa, S.A.; Santiago, B.M.; Cavalcanti, Y.W.; Almeida, L.D.F.D.D. Glass ionomer cements compared with composite resin in restoration of noncarious cervical lesions: A systematic review and meta-analysis. Heliyon 2020, 6, e03969. [Google Scholar] [CrossRef]
- Boing, T.F.; de Geus, J.L.; Wambier, L.M.; Loguercio, A.D.; Reis, A.; Mongruel Gomes, O.M. Are Glass-Ionomer Cement Restorations in Cervical Lesions More Long-Lasting than Resin-based Composite Resins? A Systematic Review and Meta-Analysis. J. Adhes. Dent. 2018, 20, 435–452. [Google Scholar]
- Kim, R.J.-Y.; Kim, Y.-J.; Choi, N.-S.; Lee, I.-B. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J. Dent. 2015, 43, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Bicalho, A.; Valdívia, A.; Barreto, B.; Tantbirojn, D.; Versluis, A.; Soares, C. Incremental Filling Technique and Composite Material—Part II: Shrinkage and Shrinkage Stresses. Oper. Dent. 2014, 39, e83–e92. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.J.; Bicalho, A.A.; Tantbirojn, D.; Versluis, A. Polymerization Shrinkage Stresses in a Premolar Restored with Different Composite Resins and Different Incremental Techniques. J. Adhes. Dent. 2013, 15, 341–350. [Google Scholar] [CrossRef] [PubMed]
- El-Damanhoury, H.; Platt, J.A. Polymerization Shrinkage Stress Kinetics and Related Properties of Bulk-fill Resin Composites. Oper. Dent. 2014, 39, 374–382. [Google Scholar] [CrossRef]
- Butera, A.; Pascadopoli, M.; Gallo, S.; Lelli, M.; Tarterini, F.; Giglia, F.; Scribante, A. SEM/EDS Evaluation of the Mineral Deposition on a Polymeric Composite Resin of a Toothpaste Containing Biomimetic Zn-Carbonate Hydroxyapatite (microRepair®) in Oral Environment: A Randomized Clinical Trial. Polymer 2021, 13, 2740. [Google Scholar] [CrossRef]
Materials Used in This Study | ||
---|---|---|
Material | Commercial Name | Composition |
Packable resin composite | GC Essentia Universal Composite | urethane dimethacrylate (UDMA), bismethacrylate (BisEMA), dimethylmethacrylate, isopropylidenediphenol, methylpropenoic acid, benzotriazolcresol. Prepolymerized silica and ytterbium trifluoride, barium glass 81 weight% |
Flowable resin composite | ||
GC Essentia LoFlo | UDMA, dimethylmethacrylate, benzotriazolcresol, fomardehyde polymers, diphenylphosphine oxide. Barium glass 69 weight%. Differences in the fillers size | |
GC Essentia HiFlo | ||
RMGIC | GC Fuji II LC in caps | 2-hydroxyethyl methacrylate, polyacrylic acid, water. 58 weight% Fluoro-aluminumsilicate |
Adhesive system | G-Premio Bond | methacryloyloxydecyl dihydrogen phosphate, methacryloxyethyl trimellitate, methacryloyloxyalkyl thiophosphate methylmethacrylate, butylated hydroxytoluene, acetone, dimethacrylateresins, initiators, water |
Dentin Conditioner | GC Dentin Conditioner | 10% polyacrylic acid |
Etching gel | Ultradent-Ultra-Etch | orthophosphoric acid 35% |
Group | N | Mean | SD | Median | Minimum | Maximum |
---|---|---|---|---|---|---|
PC | 18 | 405.44 | 148.784 | 365.50 | 238 | 844 |
HF | 15 | 309.47 | 157.855 | 310.00 | 89 | 610 |
LF | 14 | 384.29 | 116.975 | 388.00 | 187 | 578 |
RMGIC | 18 | 473.50 | 198.540 | 418.50 | 202 | 903 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battancs, E.; Fráter, M.; Sáry, T.; Gál, E.; Braunitzer, G.; Szabó P., B.; Garoushi, S. Fracture Behavior and Integrity of Different Direct Restorative Materials to Restore Noncarious Cervical Lesions. Polymers 2021, 13, 4170. https://doi.org/10.3390/polym13234170
Battancs E, Fráter M, Sáry T, Gál E, Braunitzer G, Szabó P. B, Garoushi S. Fracture Behavior and Integrity of Different Direct Restorative Materials to Restore Noncarious Cervical Lesions. Polymers. 2021; 13(23):4170. https://doi.org/10.3390/polym13234170
Chicago/Turabian StyleBattancs, Emese, Márk Fráter, Tekla Sáry, Emese Gál, Gábor Braunitzer, Balázs Szabó P., and Sufyan Garoushi. 2021. "Fracture Behavior and Integrity of Different Direct Restorative Materials to Restore Noncarious Cervical Lesions" Polymers 13, no. 23: 4170. https://doi.org/10.3390/polym13234170
APA StyleBattancs, E., Fráter, M., Sáry, T., Gál, E., Braunitzer, G., Szabó P., B., & Garoushi, S. (2021). Fracture Behavior and Integrity of Different Direct Restorative Materials to Restore Noncarious Cervical Lesions. Polymers, 13(23), 4170. https://doi.org/10.3390/polym13234170